893 lines
30 KiB
C++
893 lines
30 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
static void
|
|
thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type )
|
|
{
|
|
int i, j, j_scalar = 0;
|
|
uchar tab[256];
|
|
Size roi = _src.size();
|
|
roi.width *= _src.channels();
|
|
|
|
if( _src.isContinuous() && _dst.isContinuous() )
|
|
{
|
|
roi.width *= roi.height;
|
|
roi.height = 1;
|
|
}
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (tegra::thresh_8u(_src, _dst, roi.width, roi.height, thresh, maxval, type))
|
|
return;
|
|
#endif
|
|
|
|
switch( type )
|
|
{
|
|
case THRESH_BINARY:
|
|
for( i = 0; i <= thresh; i++ )
|
|
tab[i] = 0;
|
|
for( ; i < 256; i++ )
|
|
tab[i] = maxval;
|
|
break;
|
|
case THRESH_BINARY_INV:
|
|
for( i = 0; i <= thresh; i++ )
|
|
tab[i] = maxval;
|
|
for( ; i < 256; i++ )
|
|
tab[i] = 0;
|
|
break;
|
|
case THRESH_TRUNC:
|
|
for( i = 0; i <= thresh; i++ )
|
|
tab[i] = (uchar)i;
|
|
for( ; i < 256; i++ )
|
|
tab[i] = thresh;
|
|
break;
|
|
case THRESH_TOZERO:
|
|
for( i = 0; i <= thresh; i++ )
|
|
tab[i] = 0;
|
|
for( ; i < 256; i++ )
|
|
tab[i] = (uchar)i;
|
|
break;
|
|
case THRESH_TOZERO_INV:
|
|
for( i = 0; i <= thresh; i++ )
|
|
tab[i] = (uchar)i;
|
|
for( ; i < 256; i++ )
|
|
tab[i] = 0;
|
|
break;
|
|
default:
|
|
CV_Error( CV_StsBadArg, "Unknown threshold type" );
|
|
}
|
|
|
|
#if CV_SSE2
|
|
if( checkHardwareSupport(CV_CPU_SSE2) )
|
|
{
|
|
__m128i _x80 = _mm_set1_epi8('\x80');
|
|
__m128i thresh_u = _mm_set1_epi8(thresh);
|
|
__m128i thresh_s = _mm_set1_epi8(thresh ^ 0x80);
|
|
__m128i maxval_ = _mm_set1_epi8(maxval);
|
|
j_scalar = roi.width & -8;
|
|
|
|
for( i = 0; i < roi.height; i++ )
|
|
{
|
|
const uchar* src = (const uchar*)(_src.data + _src.step*i);
|
|
uchar* dst = (uchar*)(_dst.data + _dst.step*i);
|
|
|
|
switch( type )
|
|
{
|
|
case THRESH_BINARY:
|
|
for( j = 0; j <= roi.width - 32; j += 32 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) );
|
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s );
|
|
v1 = _mm_cmpgt_epi8( _mm_xor_si128(v1, _x80), thresh_s );
|
|
v0 = _mm_and_si128( v0, maxval_ );
|
|
v1 = _mm_and_si128( v1, maxval_ );
|
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 );
|
|
}
|
|
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) );
|
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s );
|
|
v0 = _mm_and_si128( v0, maxval_ );
|
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 );
|
|
}
|
|
break;
|
|
|
|
case THRESH_BINARY_INV:
|
|
for( j = 0; j <= roi.width - 32; j += 32 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) );
|
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s );
|
|
v1 = _mm_cmpgt_epi8( _mm_xor_si128(v1, _x80), thresh_s );
|
|
v0 = _mm_andnot_si128( v0, maxval_ );
|
|
v1 = _mm_andnot_si128( v1, maxval_ );
|
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 );
|
|
}
|
|
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) );
|
|
v0 = _mm_cmpgt_epi8( _mm_xor_si128(v0, _x80), thresh_s );
|
|
v0 = _mm_andnot_si128( v0, maxval_ );
|
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 );
|
|
}
|
|
break;
|
|
|
|
case THRESH_TRUNC:
|
|
for( j = 0; j <= roi.width - 32; j += 32 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) );
|
|
v0 = _mm_subs_epu8( v0, _mm_subs_epu8( v0, thresh_u ));
|
|
v1 = _mm_subs_epu8( v1, _mm_subs_epu8( v1, thresh_u ));
|
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 );
|
|
}
|
|
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) );
|
|
v0 = _mm_subs_epu8( v0, _mm_subs_epu8( v0, thresh_u ));
|
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 );
|
|
}
|
|
break;
|
|
|
|
case THRESH_TOZERO:
|
|
for( j = 0; j <= roi.width - 32; j += 32 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) );
|
|
v0 = _mm_and_si128( v0, _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ));
|
|
v1 = _mm_and_si128( v1, _mm_cmpgt_epi8(_mm_xor_si128(v1, _x80), thresh_s ));
|
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 );
|
|
}
|
|
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) );
|
|
v0 = _mm_and_si128( v0, _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ));
|
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 );
|
|
}
|
|
break;
|
|
|
|
case THRESH_TOZERO_INV:
|
|
for( j = 0; j <= roi.width - 32; j += 32 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 16) );
|
|
v0 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ), v0 );
|
|
v1 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v1, _x80), thresh_s ), v1 );
|
|
_mm_storeu_si128( (__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128( (__m128i*)(dst + j + 16), v1 );
|
|
}
|
|
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128i v0 = _mm_loadl_epi64( (const __m128i*)(src + j) );
|
|
v0 = _mm_andnot_si128( _mm_cmpgt_epi8(_mm_xor_si128(v0, _x80), thresh_s ), v0 );
|
|
_mm_storel_epi64( (__m128i*)(dst + j), v0 );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( j_scalar < roi.width )
|
|
{
|
|
for( i = 0; i < roi.height; i++ )
|
|
{
|
|
const uchar* src = (const uchar*)(_src.data + _src.step*i);
|
|
uchar* dst = (uchar*)(_dst.data + _dst.step*i);
|
|
j = j_scalar;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; j <= roi.width - 4; j += 4 )
|
|
{
|
|
uchar t0 = tab[src[j]];
|
|
uchar t1 = tab[src[j+1]];
|
|
|
|
dst[j] = t0;
|
|
dst[j+1] = t1;
|
|
|
|
t0 = tab[src[j+2]];
|
|
t1 = tab[src[j+3]];
|
|
|
|
dst[j+2] = t0;
|
|
dst[j+3] = t1;
|
|
}
|
|
#endif
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = tab[src[j]];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
thresh_16s( const Mat& _src, Mat& _dst, short thresh, short maxval, int type )
|
|
{
|
|
int i, j;
|
|
Size roi = _src.size();
|
|
roi.width *= _src.channels();
|
|
const short* src = (const short*)_src.data;
|
|
short* dst = (short*)_dst.data;
|
|
size_t src_step = _src.step/sizeof(src[0]);
|
|
size_t dst_step = _dst.step/sizeof(dst[0]);
|
|
|
|
#if CV_SSE2
|
|
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE);
|
|
#endif
|
|
|
|
if( _src.isContinuous() && _dst.isContinuous() )
|
|
{
|
|
roi.width *= roi.height;
|
|
roi.height = 1;
|
|
}
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (tegra::thresh_16s(_src, _dst, roi.width, roi.height, thresh, maxval, type))
|
|
return;
|
|
#endif
|
|
|
|
switch( type )
|
|
{
|
|
case THRESH_BINARY:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128i thresh8 = _mm_set1_epi16(thresh), maxval8 = _mm_set1_epi16(maxval);
|
|
for( ; j <= roi.width - 16; j += 16 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) );
|
|
v0 = _mm_cmpgt_epi16( v0, thresh8 );
|
|
v1 = _mm_cmpgt_epi16( v1, thresh8 );
|
|
v0 = _mm_and_si128( v0, maxval8 );
|
|
v1 = _mm_and_si128( v1, maxval8 );
|
|
_mm_storeu_si128((__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = src[j] > thresh ? maxval : 0;
|
|
}
|
|
break;
|
|
|
|
case THRESH_BINARY_INV:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128i thresh8 = _mm_set1_epi16(thresh), maxval8 = _mm_set1_epi16(maxval);
|
|
for( ; j <= roi.width - 16; j += 16 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) );
|
|
v0 = _mm_cmpgt_epi16( v0, thresh8 );
|
|
v1 = _mm_cmpgt_epi16( v1, thresh8 );
|
|
v0 = _mm_andnot_si128( v0, maxval8 );
|
|
v1 = _mm_andnot_si128( v1, maxval8 );
|
|
_mm_storeu_si128((__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = src[j] <= thresh ? maxval : 0;
|
|
}
|
|
break;
|
|
|
|
case THRESH_TRUNC:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128i thresh8 = _mm_set1_epi16(thresh);
|
|
for( ; j <= roi.width - 16; j += 16 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) );
|
|
v0 = _mm_min_epi16( v0, thresh8 );
|
|
v1 = _mm_min_epi16( v1, thresh8 );
|
|
_mm_storeu_si128((__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = std::min(src[j], thresh);
|
|
}
|
|
break;
|
|
|
|
case THRESH_TOZERO:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128i thresh8 = _mm_set1_epi16(thresh);
|
|
for( ; j <= roi.width - 16; j += 16 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) );
|
|
v0 = _mm_and_si128(v0, _mm_cmpgt_epi16(v0, thresh8));
|
|
v1 = _mm_and_si128(v1, _mm_cmpgt_epi16(v1, thresh8));
|
|
_mm_storeu_si128((__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
{
|
|
short v = src[j];
|
|
dst[j] = v > thresh ? v : 0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case THRESH_TOZERO_INV:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128i thresh8 = _mm_set1_epi16(thresh);
|
|
for( ; j <= roi.width - 16; j += 16 )
|
|
{
|
|
__m128i v0, v1;
|
|
v0 = _mm_loadu_si128( (const __m128i*)(src + j) );
|
|
v1 = _mm_loadu_si128( (const __m128i*)(src + j + 8) );
|
|
v0 = _mm_andnot_si128(_mm_cmpgt_epi16(v0, thresh8), v0);
|
|
v1 = _mm_andnot_si128(_mm_cmpgt_epi16(v1, thresh8), v1);
|
|
_mm_storeu_si128((__m128i*)(dst + j), v0 );
|
|
_mm_storeu_si128((__m128i*)(dst + j + 8), v1 );
|
|
}
|
|
}
|
|
#endif
|
|
for( ; j < roi.width; j++ )
|
|
{
|
|
short v = src[j];
|
|
dst[j] = v <= thresh ? v : 0;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return CV_Error( CV_StsBadArg, "" );
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type )
|
|
{
|
|
int i, j;
|
|
Size roi = _src.size();
|
|
roi.width *= _src.channels();
|
|
const float* src = (const float*)_src.data;
|
|
float* dst = (float*)_dst.data;
|
|
size_t src_step = _src.step/sizeof(src[0]);
|
|
size_t dst_step = _dst.step/sizeof(dst[0]);
|
|
|
|
#if CV_SSE2
|
|
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE);
|
|
#endif
|
|
|
|
if( _src.isContinuous() && _dst.isContinuous() )
|
|
{
|
|
roi.width *= roi.height;
|
|
roi.height = 1;
|
|
}
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (tegra::thresh_32f(_src, _dst, roi.width, roi.height, thresh, maxval, type))
|
|
return;
|
|
#endif
|
|
|
|
switch( type )
|
|
{
|
|
case THRESH_BINARY:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128 thresh4 = _mm_set1_ps(thresh), maxval4 = _mm_set1_ps(maxval);
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128 v0, v1;
|
|
v0 = _mm_loadu_ps( src + j );
|
|
v1 = _mm_loadu_ps( src + j + 4 );
|
|
v0 = _mm_cmpgt_ps( v0, thresh4 );
|
|
v1 = _mm_cmpgt_ps( v1, thresh4 );
|
|
v0 = _mm_and_ps( v0, maxval4 );
|
|
v1 = _mm_and_ps( v1, maxval4 );
|
|
_mm_storeu_ps( dst + j, v0 );
|
|
_mm_storeu_ps( dst + j + 4, v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = src[j] > thresh ? maxval : 0;
|
|
}
|
|
break;
|
|
|
|
case THRESH_BINARY_INV:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128 thresh4 = _mm_set1_ps(thresh), maxval4 = _mm_set1_ps(maxval);
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128 v0, v1;
|
|
v0 = _mm_loadu_ps( src + j );
|
|
v1 = _mm_loadu_ps( src + j + 4 );
|
|
v0 = _mm_cmple_ps( v0, thresh4 );
|
|
v1 = _mm_cmple_ps( v1, thresh4 );
|
|
v0 = _mm_and_ps( v0, maxval4 );
|
|
v1 = _mm_and_ps( v1, maxval4 );
|
|
_mm_storeu_ps( dst + j, v0 );
|
|
_mm_storeu_ps( dst + j + 4, v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = src[j] <= thresh ? maxval : 0;
|
|
}
|
|
break;
|
|
|
|
case THRESH_TRUNC:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128 thresh4 = _mm_set1_ps(thresh);
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128 v0, v1;
|
|
v0 = _mm_loadu_ps( src + j );
|
|
v1 = _mm_loadu_ps( src + j + 4 );
|
|
v0 = _mm_min_ps( v0, thresh4 );
|
|
v1 = _mm_min_ps( v1, thresh4 );
|
|
_mm_storeu_ps( dst + j, v0 );
|
|
_mm_storeu_ps( dst + j + 4, v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
dst[j] = std::min(src[j], thresh);
|
|
}
|
|
break;
|
|
|
|
case THRESH_TOZERO:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128 thresh4 = _mm_set1_ps(thresh);
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128 v0, v1;
|
|
v0 = _mm_loadu_ps( src + j );
|
|
v1 = _mm_loadu_ps( src + j + 4 );
|
|
v0 = _mm_and_ps(v0, _mm_cmpgt_ps(v0, thresh4));
|
|
v1 = _mm_and_ps(v1, _mm_cmpgt_ps(v1, thresh4));
|
|
_mm_storeu_ps( dst + j, v0 );
|
|
_mm_storeu_ps( dst + j + 4, v1 );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for( ; j < roi.width; j++ )
|
|
{
|
|
float v = src[j];
|
|
dst[j] = v > thresh ? v : 0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case THRESH_TOZERO_INV:
|
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step )
|
|
{
|
|
j = 0;
|
|
#if CV_SSE2
|
|
if( useSIMD )
|
|
{
|
|
__m128 thresh4 = _mm_set1_ps(thresh);
|
|
for( ; j <= roi.width - 8; j += 8 )
|
|
{
|
|
__m128 v0, v1;
|
|
v0 = _mm_loadu_ps( src + j );
|
|
v1 = _mm_loadu_ps( src + j + 4 );
|
|
v0 = _mm_and_ps(v0, _mm_cmple_ps(v0, thresh4));
|
|
v1 = _mm_and_ps(v1, _mm_cmple_ps(v1, thresh4));
|
|
_mm_storeu_ps( dst + j, v0 );
|
|
_mm_storeu_ps( dst + j + 4, v1 );
|
|
}
|
|
}
|
|
#endif
|
|
for( ; j < roi.width; j++ )
|
|
{
|
|
float v = src[j];
|
|
dst[j] = v <= thresh ? v : 0;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
return CV_Error( CV_StsBadArg, "" );
|
|
}
|
|
}
|
|
|
|
|
|
static double
|
|
getThreshVal_Otsu_8u( const Mat& _src )
|
|
{
|
|
Size size = _src.size();
|
|
if( _src.isContinuous() )
|
|
{
|
|
size.width *= size.height;
|
|
size.height = 1;
|
|
}
|
|
const int N = 256;
|
|
int i, j, h[N] = {0};
|
|
for( i = 0; i < size.height; i++ )
|
|
{
|
|
const uchar* src = _src.data + _src.step*i;
|
|
j = 0;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; j <= size.width - 4; j += 4 )
|
|
{
|
|
int v0 = src[j], v1 = src[j+1];
|
|
h[v0]++; h[v1]++;
|
|
v0 = src[j+2]; v1 = src[j+3];
|
|
h[v0]++; h[v1]++;
|
|
}
|
|
#endif
|
|
for( ; j < size.width; j++ )
|
|
h[src[j]]++;
|
|
}
|
|
|
|
double mu = 0, scale = 1./(size.width*size.height);
|
|
for( i = 0; i < N; i++ )
|
|
mu += i*(double)h[i];
|
|
|
|
mu *= scale;
|
|
double mu1 = 0, q1 = 0;
|
|
double max_sigma = 0, max_val = 0;
|
|
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
double p_i, q2, mu2, sigma;
|
|
|
|
p_i = h[i]*scale;
|
|
mu1 *= q1;
|
|
q1 += p_i;
|
|
q2 = 1. - q1;
|
|
|
|
if( std::min(q1,q2) < FLT_EPSILON || std::max(q1,q2) > 1. - FLT_EPSILON )
|
|
continue;
|
|
|
|
mu1 = (mu1 + i*p_i)/q1;
|
|
mu2 = (mu - q1*mu1)/q2;
|
|
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
|
|
if( sigma > max_sigma )
|
|
{
|
|
max_sigma = sigma;
|
|
max_val = i;
|
|
}
|
|
}
|
|
|
|
return max_val;
|
|
}
|
|
|
|
class ThresholdRunner
|
|
{
|
|
public:
|
|
ThresholdRunner(Mat _src, Mat _dst, int _nStripes, double _thresh, double _maxval, int _thresholdType)
|
|
{
|
|
src = _src;
|
|
dst = _dst;
|
|
|
|
nStripes = _nStripes;
|
|
|
|
thresh = _thresh;
|
|
maxval = _maxval;
|
|
thresholdType = _thresholdType;
|
|
}
|
|
|
|
void operator () ( const BlockedRange& range ) const
|
|
{
|
|
int row0 = std::min(cvRound(range.begin() * src.rows / nStripes), src.rows);
|
|
int row1 = std::min(cvRound(range.end() * src.rows / nStripes), src.rows);
|
|
|
|
/*if(0)
|
|
printf("Size = (%d, %d), range[%d,%d), row0 = %d, row1 = %d\n",
|
|
src.rows, src.cols, range.begin(), range.end(), row0, row1);*/
|
|
|
|
Mat srcStripe = src.rowRange(row0, row1);
|
|
Mat dstStripe = dst.rowRange(row0, row1);
|
|
|
|
if (srcStripe.depth() == CV_8U)
|
|
{
|
|
thresh_8u( srcStripe, dstStripe, (uchar)thresh, (uchar)maxval, thresholdType );
|
|
}
|
|
else if( srcStripe.depth() == CV_16S )
|
|
{
|
|
thresh_16s( srcStripe, dstStripe, (short)thresh, (short)maxval, thresholdType );
|
|
}
|
|
else if( srcStripe.depth() == CV_32F )
|
|
{
|
|
thresh_32f( srcStripe, dstStripe, (float)thresh, (float)maxval, thresholdType );
|
|
}
|
|
}
|
|
|
|
private:
|
|
Mat src;
|
|
Mat dst;
|
|
int nStripes;
|
|
|
|
double thresh;
|
|
double maxval;
|
|
int thresholdType;
|
|
};
|
|
|
|
}
|
|
|
|
double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double maxval, int type )
|
|
{
|
|
Mat src = _src.getMat();
|
|
bool use_otsu = (type & THRESH_OTSU) != 0;
|
|
type &= THRESH_MASK;
|
|
|
|
if( use_otsu )
|
|
{
|
|
CV_Assert( src.type() == CV_8UC1 );
|
|
thresh = getThreshVal_Otsu_8u(src);
|
|
}
|
|
|
|
_dst.create( src.size(), src.type() );
|
|
Mat dst = _dst.getMat();
|
|
|
|
int nStripes = 1;
|
|
#if defined HAVE_TBB && defined ANDROID
|
|
nStripes = 4;
|
|
#endif
|
|
|
|
if( src.depth() == CV_8U )
|
|
{
|
|
int ithresh = cvFloor(thresh);
|
|
thresh = ithresh;
|
|
int imaxval = cvRound(maxval);
|
|
if( type == THRESH_TRUNC )
|
|
imaxval = ithresh;
|
|
imaxval = saturate_cast<uchar>(imaxval);
|
|
|
|
if( ithresh < 0 || ithresh >= 255 )
|
|
{
|
|
if( type == THRESH_BINARY || type == THRESH_BINARY_INV ||
|
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) ||
|
|
(type == THRESH_TOZERO && ithresh >= 255) )
|
|
{
|
|
int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) :
|
|
type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) :
|
|
/*type == THRESH_TRUNC ? imaxval :*/ 0;
|
|
dst.setTo(v);
|
|
}
|
|
else
|
|
src.copyTo(dst);
|
|
}
|
|
else
|
|
{
|
|
parallel_for(BlockedRange(0, nStripes),
|
|
ThresholdRunner(src, dst, nStripes, (uchar)ithresh, (uchar)imaxval, type));
|
|
}
|
|
}
|
|
else if( src.depth() == CV_16S )
|
|
{
|
|
int ithresh = cvFloor(thresh);
|
|
thresh = ithresh;
|
|
int imaxval = cvRound(maxval);
|
|
if( type == THRESH_TRUNC )
|
|
imaxval = ithresh;
|
|
imaxval = saturate_cast<short>(imaxval);
|
|
|
|
if( ithresh < SHRT_MIN || ithresh >= SHRT_MAX )
|
|
{
|
|
if( type == THRESH_BINARY || type == THRESH_BINARY_INV ||
|
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < SHRT_MIN) ||
|
|
(type == THRESH_TOZERO && ithresh >= SHRT_MAX) )
|
|
{
|
|
int v = type == THRESH_BINARY ? (ithresh >= SHRT_MAX ? 0 : imaxval) :
|
|
type == THRESH_BINARY_INV ? (ithresh >= SHRT_MAX ? imaxval : 0) :
|
|
/*type == THRESH_TRUNC ? imaxval :*/ 0;
|
|
dst.setTo(v);
|
|
}
|
|
else
|
|
src.copyTo(dst);
|
|
}
|
|
else
|
|
{
|
|
parallel_for(BlockedRange(0, nStripes),
|
|
ThresholdRunner(src, dst, nStripes, (short)ithresh, (short)imaxval, type));
|
|
}
|
|
}
|
|
else if( src.depth() == CV_32F )
|
|
{
|
|
parallel_for(BlockedRange(0, nStripes),
|
|
ThresholdRunner(src, dst, nStripes, (float)thresh, (float)maxval, type));
|
|
}
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "" );
|
|
|
|
return thresh;
|
|
}
|
|
|
|
|
|
void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
|
int method, int type, int blockSize, double delta )
|
|
{
|
|
Mat src = _src.getMat();
|
|
CV_Assert( src.type() == CV_8UC1 );
|
|
CV_Assert( blockSize % 2 == 1 && blockSize > 1 );
|
|
Size size = src.size();
|
|
|
|
_dst.create( size, src.type() );
|
|
Mat dst = _dst.getMat();
|
|
|
|
if( maxValue < 0 )
|
|
{
|
|
dst = Scalar(0);
|
|
return;
|
|
}
|
|
|
|
Mat mean;
|
|
|
|
if( src.data != dst.data )
|
|
mean = dst;
|
|
|
|
if( method == ADAPTIVE_THRESH_MEAN_C )
|
|
boxFilter( src, mean, src.type(), Size(blockSize, blockSize),
|
|
Point(-1,-1), true, BORDER_REPLICATE );
|
|
else if( method == ADAPTIVE_THRESH_GAUSSIAN_C )
|
|
GaussianBlur( src, mean, Size(blockSize, blockSize), 0, 0, BORDER_REPLICATE );
|
|
else
|
|
CV_Error( CV_StsBadFlag, "Unknown/unsupported adaptive threshold method" );
|
|
|
|
int i, j;
|
|
uchar imaxval = saturate_cast<uchar>(maxValue);
|
|
int idelta = type == THRESH_BINARY ? cvCeil(delta) : cvFloor(delta);
|
|
uchar tab[768];
|
|
|
|
if( type == CV_THRESH_BINARY )
|
|
for( i = 0; i < 768; i++ )
|
|
tab[i] = (uchar)(i - 255 > -idelta ? imaxval : 0);
|
|
else if( type == CV_THRESH_BINARY_INV )
|
|
for( i = 0; i < 768; i++ )
|
|
tab[i] = (uchar)(i - 255 <= -idelta ? imaxval : 0);
|
|
else
|
|
CV_Error( CV_StsBadFlag, "Unknown/unsupported threshold type" );
|
|
|
|
if( src.isContinuous() && mean.isContinuous() && dst.isContinuous() )
|
|
{
|
|
size.width *= size.height;
|
|
size.height = 1;
|
|
}
|
|
|
|
for( i = 0; i < size.height; i++ )
|
|
{
|
|
const uchar* sdata = src.data + src.step*i;
|
|
const uchar* mdata = mean.data + mean.step*i;
|
|
uchar* ddata = dst.data + dst.step*i;
|
|
|
|
for( j = 0; j < size.width; j++ )
|
|
ddata[j] = tab[sdata[j] - mdata[j] + 255];
|
|
}
|
|
}
|
|
|
|
CV_IMPL double
|
|
cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
|
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() &&
|
|
(src.depth() == dst.depth() || dst.depth() == CV_8U));
|
|
|
|
thresh = cv::threshold( src, dst, thresh, maxval, type );
|
|
if( dst0.data != dst.data )
|
|
dst.convertTo( dst0, dst0.depth() );
|
|
return thresh;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvAdaptiveThreshold( const void *srcIm, void *dstIm, double maxValue,
|
|
int method, int type, int blockSize, double delta )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcIm), dst = cv::cvarrToMat(dstIm);
|
|
CV_Assert( src.size == dst.size && src.type() == dst.type() );
|
|
cv::adaptiveThreshold( src, dst, maxValue, method, type, blockSize, delta );
|
|
}
|
|
|
|
/* End of file. */
|