178 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHSPHERE_H
 | |
| #define INCLUDED_IMATHSPHERE_H
 | |
| 
 | |
| //-------------------------------------
 | |
| //
 | |
| //	A 3D sphere class template
 | |
| //
 | |
| //-------------------------------------
 | |
| 
 | |
| #include "ImathVec.h"
 | |
| #include "ImathBox.h"
 | |
| #include "ImathLine.h"
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| template <class T>
 | |
| class Sphere3
 | |
| {
 | |
|   public:
 | |
| 
 | |
|     Vec3<T>	center;
 | |
|     T           radius;
 | |
| 
 | |
|     //---------------
 | |
|     //	Constructors
 | |
|     //---------------
 | |
| 
 | |
|     Sphere3() : center(0,0,0), radius(0) {}
 | |
|     Sphere3(const Vec3<T> &c, T r) : center(c), radius(r) {}
 | |
| 
 | |
|     //-------------------------------------------------------------------
 | |
|     //	Utilities:
 | |
|     //
 | |
|     //	s.circumscribe(b)	sets center and radius of sphere s
 | |
|     //				so that the s tightly encloses box b.
 | |
|     //
 | |
|     //	s.intersectT (l, t)	If sphere s and line l intersect, then
 | |
|     //				intersectT() computes the smallest t,
 | |
|     //				t >= 0, so that l(t) is a point on the
 | |
|     //				sphere.  intersectT() then returns true.
 | |
|     //
 | |
|     //				If s and l do not intersect, intersectT()
 | |
|     //				returns false.
 | |
|     //
 | |
|     //	s.intersect (l, i)	If sphere s and line l intersect, then
 | |
|     //				intersect() calls s.intersectT(l,t) and
 | |
|     //				computes i = l(t).
 | |
|     //
 | |
|     //				If s and l do not intersect, intersect()
 | |
|     //				returns false.
 | |
|     //
 | |
|     //-------------------------------------------------------------------
 | |
| 
 | |
|     void circumscribe(const Box<Vec3<T> > &box);
 | |
|     bool intersect(const Line3<T> &l, Vec3<T> &intersection) const;
 | |
|     bool intersectT(const Line3<T> &l, T &t) const;
 | |
| };
 | |
| 
 | |
| 
 | |
| //--------------------
 | |
| // Convenient typedefs
 | |
| //--------------------
 | |
| 
 | |
| typedef Sphere3<float> Sphere3f;
 | |
| typedef Sphere3<double> Sphere3d;
 | |
| 
 | |
| 
 | |
| //---------------
 | |
| // Implementation
 | |
| //---------------
 | |
| 
 | |
| template <class T>
 | |
| void Sphere3<T>::circumscribe(const Box<Vec3<T> > &box)
 | |
| {
 | |
|     center = T(0.5) * (box.min + box.max);
 | |
|     radius = (box.max - center).length();
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool Sphere3<T>::intersectT(const Line3<T> &line, T &t) const
 | |
| {
 | |
|     bool doesIntersect = true;
 | |
| 
 | |
|     Vec3<T> v = line.pos - center;
 | |
|     T B = T(2.0) * (line.dir ^ v);
 | |
|     T C = (v ^ v) - (radius * radius);
 | |
| 
 | |
|     // compute discriminant
 | |
|     // if negative, there is no intersection
 | |
| 
 | |
|     T discr = B*B - T(4.0)*C;
 | |
| 
 | |
|     if (discr < 0.0)
 | |
|     {
 | |
|     // line and Sphere3 do not intersect
 | |
| 
 | |
|     doesIntersect = false;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     // t0: (-B - sqrt(B^2 - 4AC)) / 2A  (A = 1)
 | |
| 
 | |
|     T sqroot = Math<T>::sqrt(discr);
 | |
|     t = (-B - sqroot) * T(0.5);
 | |
| 
 | |
|     if (t < 0.0)
 | |
|     {
 | |
|         // no intersection, try t1: (-B + sqrt(B^2 - 4AC)) / 2A  (A = 1)
 | |
| 
 | |
|         t = (-B + sqroot) * T(0.5);
 | |
|     }
 | |
| 
 | |
|     if (t < 0.0)
 | |
|         doesIntersect = false;
 | |
|     }
 | |
| 
 | |
|     return doesIntersect;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| bool Sphere3<T>::intersect(const Line3<T> &line, Vec3<T> &intersection) const
 | |
| {
 | |
|     T t;
 | |
| 
 | |
|     if (intersectT (line, t))
 | |
|     {
 | |
|     intersection = line(t);
 | |
|     return true;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| } //namespace Imath
 | |
| 
 | |
| #endif
 | 
