413 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			413 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <vector>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace cv::flann;
 | |
| 
 | |
| //--------------------------------------------------------------------------------
 | |
| class NearestNeighborTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     NearestNeighborTest() {}
 | |
| protected:
 | |
|     static const int minValue = 0;
 | |
|     static const int maxValue = 1;
 | |
|     static const int dims = 30;
 | |
|     static const int featuresCount = 2000;
 | |
|     static const int K = 1; // * should also test 2nd nn etc.?
 | |
| 
 | |
| 
 | |
|     virtual void run( int start_from );
 | |
|     virtual void createModel( const Mat& data ) = 0;
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
 | |
|     virtual int checkGetPoins( const Mat& data );
 | |
|     virtual int checkFindBoxed();
 | |
|     virtual int checkFind( const Mat& data );
 | |
|     virtual void releaseModel() = 0;
 | |
| };
 | |
| 
 | |
| int NearestNeighborTest::checkGetPoins( const Mat& )
 | |
| {
 | |
|    return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int NearestNeighborTest::checkFindBoxed()
 | |
| {
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int NearestNeighborTest::checkFind( const Mat& data )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     int pointsCount = 1000;
 | |
|     float noise = 0.2f;
 | |
| 
 | |
|     RNG rng;
 | |
|     Mat points( pointsCount, dims, CV_32FC1 );
 | |
|     Mat results( pointsCount, K, CV_32SC1 );
 | |
| 
 | |
|     std::vector<int> fmap( pointsCount );
 | |
|     for( int pi = 0; pi < pointsCount; pi++ )
 | |
|     {
 | |
|         int fi = rng.next() % featuresCount;
 | |
|         fmap[pi] = fi;
 | |
|         for( int d = 0; d < dims; d++ )
 | |
|             points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise;
 | |
|     }
 | |
| 
 | |
|     code = findNeighbors( points, results );
 | |
| 
 | |
|     if( code == cvtest::TS::OK )
 | |
|     {
 | |
|         int correctMatches = 0;
 | |
|         for( int pi = 0; pi < pointsCount; pi++ )
 | |
|         {
 | |
|             if( fmap[pi] == results.at<int>(pi, 0) )
 | |
|                 correctMatches++;
 | |
|         }
 | |
| 
 | |
|         double correctPerc = correctMatches / (double)pointsCount;
 | |
|         if (correctPerc < .75)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc );
 | |
|             code = cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| void NearestNeighborTest::run( int /*start_from*/ ) {
 | |
|     int code = cvtest::TS::OK, tempCode;
 | |
|     Mat desc( featuresCount, dims, CV_32FC1 );
 | |
|     randu( desc, Scalar(minValue), Scalar(maxValue) );
 | |
| 
 | |
|     createModel( desc );
 | |
| 
 | |
|     tempCode = checkGetPoins( desc );
 | |
|     if( tempCode != cvtest::TS::OK )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
 | |
|         code = tempCode;
 | |
|     }
 | |
| 
 | |
|     tempCode = checkFindBoxed();
 | |
|     if( tempCode != cvtest::TS::OK )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" );
 | |
|         code = tempCode;
 | |
|     }
 | |
| 
 | |
|     tempCode = checkFind( desc );
 | |
|     if( tempCode != cvtest::TS::OK )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" );
 | |
|         code = tempCode;
 | |
|     }
 | |
| 
 | |
|     releaseModel();
 | |
| 
 | |
|     ts->set_failed_test_info( code );
 | |
| }
 | |
| 
 | |
| //--------------------------------------------------------------------------------
 | |
| class CV_KDTreeTest_CPP : public NearestNeighborTest
 | |
| {
 | |
| public:
 | |
|     CV_KDTreeTest_CPP() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data );
 | |
|     virtual int checkGetPoins( const Mat& data );
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors );
 | |
|     virtual int checkFindBoxed();
 | |
|     virtual void releaseModel();
 | |
|     KDTree* tr;
 | |
| };
 | |
| 
 | |
| 
 | |
| void CV_KDTreeTest_CPP::createModel( const Mat& data )
 | |
| {
 | |
|     tr = new KDTree( data, false );
 | |
| }
 | |
| 
 | |
| int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data )
 | |
| {
 | |
|     Mat res1( data.size(), data.type() ),
 | |
|         res3( data.size(), data.type() );
 | |
|     Mat idxs( 1, data.rows, CV_32SC1 );
 | |
|     for( int pi = 0; pi < data.rows; pi++ )
 | |
|     {
 | |
|         idxs.at<int>(0, pi) = pi;
 | |
|         // 1st way
 | |
|         const float* point = tr->getPoint(pi);
 | |
|         for( int di = 0; di < data.cols; di++ )
 | |
|             res1.at<float>(pi, di) = point[di];
 | |
|     }
 | |
| 
 | |
|     // 3d way
 | |
|     tr->getPoints( idxs, res3 );
 | |
| 
 | |
|     if( norm( res1, data, NORM_L1) != 0 ||
 | |
|         norm( res3, data, NORM_L1) != 0)
 | |
|         return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int CV_KDTreeTest_CPP::checkFindBoxed()
 | |
| {
 | |
|     vector<float> min( dims, static_cast<float>(minValue)), max(dims, static_cast<float>(maxValue));
 | |
|     vector<int> indices;
 | |
|     tr->findOrthoRange( min, max, indices );
 | |
|     // TODO check indices
 | |
|     if( (int)indices.size() != featuresCount)
 | |
|         return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors )
 | |
| {
 | |
|     const int emax = 20;
 | |
|     Mat neighbors2( neighbors.size(), CV_32SC1 );
 | |
|     int j;
 | |
|     vector<float> min(points.cols, static_cast<float>(minValue));
 | |
|     vector<float> max(points.cols, static_cast<float>(maxValue));
 | |
|     for( int pi = 0; pi < points.rows; pi++ )
 | |
|     {
 | |
|         // 1st way
 | |
|         Mat nrow = neighbors.row(pi);
 | |
|         tr->findNearest( points.row(pi), neighbors.cols, emax, nrow );
 | |
| 
 | |
|         // 2nd way
 | |
|         vector<int> neighborsIdx2( neighbors2.cols, 0 );
 | |
|         tr->findNearest( points.row(pi), neighbors2.cols, emax, neighborsIdx2 );
 | |
|         vector<int>::const_iterator it2 = neighborsIdx2.begin();
 | |
|         for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ )
 | |
|             neighbors2.at<int>(pi,j) = *it2;
 | |
|     }
 | |
| 
 | |
|     // compare results
 | |
|     if( norm( neighbors, neighbors2, NORM_L1 ) != 0 )
 | |
|         return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
| 
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| void CV_KDTreeTest_CPP::releaseModel()
 | |
| {
 | |
|     delete tr;
 | |
| }
 | |
| 
 | |
| //--------------------------------------------------------------------------------
 | |
| class CV_FlannTest : public NearestNeighborTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannTest() {}
 | |
| protected:
 | |
|     void createIndex( const Mat& data, const IndexParams& params );
 | |
|     int knnSearch( Mat& points, Mat& neighbors );
 | |
|     int radiusSearch( Mat& points, Mat& neighbors );
 | |
|     virtual void releaseModel();
 | |
|     Index* index;
 | |
| };
 | |
| 
 | |
| void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params )
 | |
| {
 | |
|     index = new Index( data, params );
 | |
| }
 | |
| 
 | |
| int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors )
 | |
| {
 | |
|     Mat dist( points.rows, neighbors.cols, CV_32FC1);
 | |
|     int knn = 1, j;
 | |
| 
 | |
|     // 1st way
 | |
|     index->knnSearch( points, neighbors, dist, knn, SearchParams() );
 | |
| 
 | |
|     // 2nd way
 | |
|     Mat neighbors1( neighbors.size(), CV_32SC1 );
 | |
|     for( int i = 0; i < points.rows; i++ )
 | |
|     {
 | |
|         float* fltPtr = points.ptr<float>(i);
 | |
|         vector<float> query( fltPtr, fltPtr + points.cols );
 | |
|         vector<int> indices( neighbors1.cols, 0 );
 | |
|         vector<float> dists( dist.cols, 0 );
 | |
|         index->knnSearch( query, indices, dists, knn, SearchParams() );
 | |
|         vector<int>::const_iterator it = indices.begin();
 | |
|         for( j = 0; it != indices.end(); ++it, j++ )
 | |
|             neighbors1.at<int>(i,j) = *it;
 | |
|     }
 | |
| 
 | |
|     // compare results
 | |
|     if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
 | |
|         return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
| 
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
 | |
| {
 | |
|     Mat dist( 1, neighbors.cols, CV_32FC1);
 | |
|     Mat neighbors1( neighbors.size(), CV_32SC1 );
 | |
|     float radius = 10.0f;
 | |
|     int j;
 | |
| 
 | |
|     // radiusSearch can only search one feature at a time for range search
 | |
|     for( int i = 0; i < points.rows; i++ )
 | |
|     {
 | |
|         // 1st way
 | |
|         Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ),
 | |
|             n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) );
 | |
|         index->radiusSearch( p, n, dist, radius, neighbors.cols, SearchParams() );
 | |
| 
 | |
|         // 2nd way
 | |
|         float* fltPtr = points.ptr<float>(i);
 | |
|         vector<float> query( fltPtr, fltPtr + points.cols );
 | |
|         vector<int> indices( neighbors1.cols, 0 );
 | |
|         vector<float> dists( dist.cols, 0 );
 | |
|         index->radiusSearch( query, indices, dists, radius, neighbors.cols, SearchParams() );
 | |
|         vector<int>::const_iterator it = indices.begin();
 | |
|         for( j = 0; it != indices.end(); ++it, j++ )
 | |
|             neighbors1.at<int>(i,j) = *it;
 | |
|     }
 | |
|     // compare results
 | |
|     if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
 | |
|         return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
| 
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| void CV_FlannTest::releaseModel()
 | |
| {
 | |
|     delete index;
 | |
| }
 | |
| 
 | |
| //---------------------------------------
 | |
| class CV_FlannLinearIndexTest : public CV_FlannTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannLinearIndexTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); }
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
 | |
| };
 | |
| 
 | |
| //---------------------------------------
 | |
| class CV_FlannKMeansIndexTest : public CV_FlannTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannKMeansIndexTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); }
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
 | |
| };
 | |
| 
 | |
| //---------------------------------------
 | |
| class CV_FlannKDTreeIndexTest : public CV_FlannTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannKDTreeIndexTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); }
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
 | |
| };
 | |
| 
 | |
| //----------------------------------------
 | |
| class CV_FlannCompositeIndexTest : public CV_FlannTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannCompositeIndexTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); }
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
 | |
| };
 | |
| 
 | |
| //----------------------------------------
 | |
| class CV_FlannAutotunedIndexTest : public CV_FlannTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannAutotunedIndexTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); }
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
 | |
| };
 | |
| //----------------------------------------
 | |
| class CV_FlannSavedIndexTest : public CV_FlannTest
 | |
| {
 | |
| public:
 | |
|     CV_FlannSavedIndexTest() {}
 | |
| protected:
 | |
|     virtual void createModel( const Mat& data );
 | |
|     virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
 | |
| };
 | |
| 
 | |
| void CV_FlannSavedIndexTest::createModel(const cv::Mat &data)
 | |
| {
 | |
|     switch ( cvtest::randInt(ts->get_rng()) % 2 )
 | |
|     {
 | |
|         //case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search
 | |
|         case 0: createIndex( data, KMeansIndexParams() ); break;
 | |
|         case 1: createIndex( data, KDTreeIndexParams() ); break;
 | |
|         //case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search
 | |
|         //case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index !
 | |
|         default: assert(0);
 | |
|     }
 | |
|     string filename = tempfile();
 | |
|     index->save( filename );
 | |
| 
 | |
|     createIndex( data, SavedIndexParams(filename.c_str()));
 | |
|     remove( filename.c_str() );
 | |
| }
 | |
| 
 | |
| TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); }
 | |
| TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); }
 | |
| TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); }
 | |
| TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); }
 | |
| TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); }
 | |
| TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); }
 | |
| TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); }
 | 
