 ab40c2acf7
			
		
	
	ab40c2acf7
	
	
	
		
			
			when true, use signed gradient for the angular histogram computation. default to false for backward compatibility.
		
			
				
	
	
		
			467 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			467 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                          License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef __OPENCV_OBJDETECT_HPP__
 | |
| #define __OPENCV_OBJDETECT_HPP__
 | |
| 
 | |
| #include "opencv2/core.hpp"
 | |
| 
 | |
| /**
 | |
| @defgroup objdetect Object Detection
 | |
| 
 | |
| Haar Feature-based Cascade Classifier for Object Detection
 | |
| ----------------------------------------------------------
 | |
| 
 | |
| The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
 | |
| improved by Rainer Lienhart @cite Lienhart02 .
 | |
| 
 | |
| First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
 | |
| trained with a few hundred sample views of a particular object (i.e., a face or a car), called
 | |
| positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
 | |
| images of the same size.
 | |
| 
 | |
| After a classifier is trained, it can be applied to a region of interest (of the same size as used
 | |
| during the training) in an input image. The classifier outputs a "1" if the region is likely to show
 | |
| the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
 | |
| move the search window across the image and check every location using the classifier. The
 | |
| classifier is designed so that it can be easily "resized" in order to be able to find the objects of
 | |
| interest at different sizes, which is more efficient than resizing the image itself. So, to find an
 | |
| object of an unknown size in the image the scan procedure should be done several times at different
 | |
| scales.
 | |
| 
 | |
| The word "cascade" in the classifier name means that the resultant classifier consists of several
 | |
| simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
 | |
| stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
 | |
| classifiers at every stage of the cascade are complex themselves and they are built out of basic
 | |
| classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
 | |
| Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
 | |
| decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
 | |
| classifiers, and are calculated as described below. The current algorithm uses the following
 | |
| Haar-like features:
 | |
| 
 | |
| 
 | |
| 
 | |
| The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
 | |
| the region of interest and the scale (this scale is not the same as the scale used at the detection
 | |
| stage, though these two scales are multiplied). For example, in the case of the third line feature
 | |
| (2c) the response is calculated as the difference between the sum of image pixels under the
 | |
| rectangle covering the whole feature (including the two white stripes and the black stripe in the
 | |
| middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
 | |
| compensate for the differences in the size of areas. The sums of pixel values over a rectangular
 | |
| regions are calculated rapidly using integral images (see below and the integral description).
 | |
| 
 | |
| To see the object detector at work, have a look at the facedetect demo:
 | |
| <https://github.com/Itseez/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
 | |
| 
 | |
| The following reference is for the detection part only. There is a separate application called
 | |
| opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
 | |
| 
 | |
| @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
 | |
| addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
 | |
| using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
 | |
| <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
 | |
| 
 | |
| @{
 | |
|     @defgroup objdetect_c C API
 | |
| @}
 | |
|  */
 | |
| 
 | |
| typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| 
 | |
| //! @addtogroup objdetect
 | |
| //! @{
 | |
| 
 | |
| ///////////////////////////// Object Detection ////////////////////////////
 | |
| 
 | |
| //! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
 | |
| //! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
 | |
| class CV_EXPORTS SimilarRects
 | |
| {
 | |
| public:
 | |
|     SimilarRects(double _eps) : eps(_eps) {}
 | |
|     inline bool operator()(const Rect& r1, const Rect& r2) const
 | |
|     {
 | |
|         double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
 | |
|         return std::abs(r1.x - r2.x) <= delta &&
 | |
|             std::abs(r1.y - r2.y) <= delta &&
 | |
|             std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
 | |
|             std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
 | |
|     }
 | |
|     double eps;
 | |
| };
 | |
| 
 | |
| /** @brief Groups the object candidate rectangles.
 | |
| 
 | |
| @param rectList Input/output vector of rectangles. Output vector includes retained and grouped
 | |
| rectangles. (The Python list is not modified in place.)
 | |
| @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
 | |
| group of rectangles to retain it.
 | |
| @param eps Relative difference between sides of the rectangles to merge them into a group.
 | |
| 
 | |
| The function is a wrapper for the generic function partition . It clusters all the input rectangles
 | |
| using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
 | |
| locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
 | |
| \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
 | |
| clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
 | |
| cluster, the average rectangle is computed and put into the output rectangle list.
 | |
|  */
 | |
| CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
 | |
| /** @overload */
 | |
| CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
 | |
|                                   int groupThreshold, double eps = 0.2);
 | |
| /** @overload */
 | |
| CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
 | |
|                                   double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
 | |
| /** @overload */
 | |
| CV_EXPORTS   void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
 | |
|                                   std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
 | |
| /** @overload */
 | |
| CV_EXPORTS   void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
 | |
|                                             std::vector<double>& foundScales,
 | |
|                                             double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
 | |
| 
 | |
| template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const;
 | |
| 
 | |
| enum { CASCADE_DO_CANNY_PRUNING    = 1,
 | |
|        CASCADE_SCALE_IMAGE         = 2,
 | |
|        CASCADE_FIND_BIGGEST_OBJECT = 4,
 | |
|        CASCADE_DO_ROUGH_SEARCH     = 8
 | |
|      };
 | |
| 
 | |
| class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
 | |
| {
 | |
| public:
 | |
|     virtual ~BaseCascadeClassifier();
 | |
|     virtual bool empty() const = 0;
 | |
|     virtual bool load( const String& filename ) = 0;
 | |
|     virtual void detectMultiScale( InputArray image,
 | |
|                            CV_OUT std::vector<Rect>& objects,
 | |
|                            double scaleFactor,
 | |
|                            int minNeighbors, int flags,
 | |
|                            Size minSize, Size maxSize ) = 0;
 | |
| 
 | |
|     virtual void detectMultiScale( InputArray image,
 | |
|                            CV_OUT std::vector<Rect>& objects,
 | |
|                            CV_OUT std::vector<int>& numDetections,
 | |
|                            double scaleFactor,
 | |
|                            int minNeighbors, int flags,
 | |
|                            Size minSize, Size maxSize ) = 0;
 | |
| 
 | |
|     virtual void detectMultiScale( InputArray image,
 | |
|                                    CV_OUT std::vector<Rect>& objects,
 | |
|                                    CV_OUT std::vector<int>& rejectLevels,
 | |
|                                    CV_OUT std::vector<double>& levelWeights,
 | |
|                                    double scaleFactor,
 | |
|                                    int minNeighbors, int flags,
 | |
|                                    Size minSize, Size maxSize,
 | |
|                                    bool outputRejectLevels ) = 0;
 | |
| 
 | |
|     virtual bool isOldFormatCascade() const = 0;
 | |
|     virtual Size getOriginalWindowSize() const = 0;
 | |
|     virtual int getFeatureType() const = 0;
 | |
|     virtual void* getOldCascade() = 0;
 | |
| 
 | |
|     class CV_EXPORTS MaskGenerator
 | |
|     {
 | |
|     public:
 | |
|         virtual ~MaskGenerator() {}
 | |
|         virtual Mat generateMask(const Mat& src)=0;
 | |
|         virtual void initializeMask(const Mat& /*src*/) { }
 | |
|     };
 | |
|     virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
 | |
|     virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
 | |
| };
 | |
| 
 | |
| /** @brief Cascade classifier class for object detection.
 | |
|  */
 | |
| class CV_EXPORTS_W CascadeClassifier
 | |
| {
 | |
| public:
 | |
|     CV_WRAP CascadeClassifier();
 | |
|     /** @brief Loads a classifier from a file.
 | |
| 
 | |
|     @param filename Name of the file from which the classifier is loaded.
 | |
|      */
 | |
|     CV_WRAP CascadeClassifier(const String& filename);
 | |
|     ~CascadeClassifier();
 | |
|     /** @brief Checks whether the classifier has been loaded.
 | |
|     */
 | |
|     CV_WRAP bool empty() const;
 | |
|     /** @brief Loads a classifier from a file.
 | |
| 
 | |
|     @param filename Name of the file from which the classifier is loaded. The file may contain an old
 | |
|     HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
 | |
|     traincascade application.
 | |
|      */
 | |
|     CV_WRAP bool load( const String& filename );
 | |
|     /** @brief Reads a classifier from a FileStorage node.
 | |
| 
 | |
|     @note The file may contain a new cascade classifier (trained traincascade application) only.
 | |
|      */
 | |
|     CV_WRAP bool read( const FileNode& node );
 | |
| 
 | |
|     /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
 | |
|     of rectangles.
 | |
| 
 | |
|     @param image Matrix of the type CV_8U containing an image where objects are detected.
 | |
|     @param objects Vector of rectangles where each rectangle contains the detected object, the
 | |
|     rectangles may be partially outside the original image.
 | |
|     @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
 | |
|     @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
 | |
|     to retain it.
 | |
|     @param flags Parameter with the same meaning for an old cascade as in the function
 | |
|     cvHaarDetectObjects. It is not used for a new cascade.
 | |
|     @param minSize Minimum possible object size. Objects smaller than that are ignored.
 | |
|     @param maxSize Maximum possible object size. Objects larger than that are ignored.
 | |
| 
 | |
|     The function is parallelized with the TBB library.
 | |
| 
 | |
|     @note
 | |
|        -   (Python) A face detection example using cascade classifiers can be found at
 | |
|             opencv_source_code/samples/python2/facedetect.py
 | |
|     */
 | |
|     CV_WRAP void detectMultiScale( InputArray image,
 | |
|                           CV_OUT std::vector<Rect>& objects,
 | |
|                           double scaleFactor = 1.1,
 | |
|                           int minNeighbors = 3, int flags = 0,
 | |
|                           Size minSize = Size(),
 | |
|                           Size maxSize = Size() );
 | |
| 
 | |
|     /** @overload
 | |
|     @param image Matrix of the type CV_8U containing an image where objects are detected.
 | |
|     @param objects Vector of rectangles where each rectangle contains the detected object, the
 | |
|     rectangles may be partially outside the original image.
 | |
|     @param numDetections Vector of detection numbers for the corresponding objects. An object's number
 | |
|     of detections is the number of neighboring positively classified rectangles that were joined
 | |
|     together to form the object.
 | |
|     @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
 | |
|     @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
 | |
|     to retain it.
 | |
|     @param flags Parameter with the same meaning for an old cascade as in the function
 | |
|     cvHaarDetectObjects. It is not used for a new cascade.
 | |
|     @param minSize Minimum possible object size. Objects smaller than that are ignored.
 | |
|     @param maxSize Maximum possible object size. Objects larger than that are ignored.
 | |
|     */
 | |
|     CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
 | |
|                           CV_OUT std::vector<Rect>& objects,
 | |
|                           CV_OUT std::vector<int>& numDetections,
 | |
|                           double scaleFactor=1.1,
 | |
|                           int minNeighbors=3, int flags=0,
 | |
|                           Size minSize=Size(),
 | |
|                           Size maxSize=Size() );
 | |
| 
 | |
|     /** @overload
 | |
|     if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights`
 | |
|     */
 | |
|     CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
 | |
|                                   CV_OUT std::vector<Rect>& objects,
 | |
|                                   CV_OUT std::vector<int>& rejectLevels,
 | |
|                                   CV_OUT std::vector<double>& levelWeights,
 | |
|                                   double scaleFactor = 1.1,
 | |
|                                   int minNeighbors = 3, int flags = 0,
 | |
|                                   Size minSize = Size(),
 | |
|                                   Size maxSize = Size(),
 | |
|                                   bool outputRejectLevels = false );
 | |
| 
 | |
|     CV_WRAP bool isOldFormatCascade() const;
 | |
|     CV_WRAP Size getOriginalWindowSize() const;
 | |
|     CV_WRAP int getFeatureType() const;
 | |
|     void* getOldCascade();
 | |
| 
 | |
|     CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
 | |
| 
 | |
|     void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
 | |
|     Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
 | |
| 
 | |
|     Ptr<BaseCascadeClassifier> cc;
 | |
| };
 | |
| 
 | |
| CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
 | |
| 
 | |
| //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
 | |
| 
 | |
| //! struct for detection region of interest (ROI)
 | |
| struct DetectionROI
 | |
| {
 | |
|    //! scale(size) of the bounding box
 | |
|    double scale;
 | |
|    //! set of requrested locations to be evaluated
 | |
|    std::vector<cv::Point> locations;
 | |
|    //! vector that will contain confidence values for each location
 | |
|    std::vector<double> confidences;
 | |
| };
 | |
| 
 | |
| struct CV_EXPORTS_W HOGDescriptor
 | |
| {
 | |
| public:
 | |
|     enum { L2Hys = 0
 | |
|          };
 | |
|     enum { DEFAULT_NLEVELS = 64
 | |
|          };
 | |
| 
 | |
|     CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
 | |
|         cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
 | |
|         histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
 | |
|         free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
 | |
|     {}
 | |
| 
 | |
|     CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
 | |
|                   Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
 | |
|                   int _histogramNormType=HOGDescriptor::L2Hys,
 | |
|                   double _L2HysThreshold=0.2, bool _gammaCorrection=false,
 | |
|                   int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
 | |
|     : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
 | |
|     nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
 | |
|     histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
 | |
|     gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
 | |
|     {}
 | |
| 
 | |
|     CV_WRAP HOGDescriptor(const String& filename)
 | |
|     {
 | |
|         load(filename);
 | |
|     }
 | |
| 
 | |
|     HOGDescriptor(const HOGDescriptor& d)
 | |
|     {
 | |
|         d.copyTo(*this);
 | |
|     }
 | |
| 
 | |
|     virtual ~HOGDescriptor() {}
 | |
| 
 | |
|     CV_WRAP size_t getDescriptorSize() const;
 | |
|     CV_WRAP bool checkDetectorSize() const;
 | |
|     CV_WRAP double getWinSigma() const;
 | |
| 
 | |
|     CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
 | |
| 
 | |
|     virtual bool read(FileNode& fn);
 | |
|     virtual void write(FileStorage& fs, const String& objname) const;
 | |
| 
 | |
|     CV_WRAP virtual bool load(const String& filename, const String& objname = String());
 | |
|     CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
 | |
|     virtual void copyTo(HOGDescriptor& c) const;
 | |
| 
 | |
|     CV_WRAP virtual void compute(InputArray img,
 | |
|                          CV_OUT std::vector<float>& descriptors,
 | |
|                          Size winStride = Size(), Size padding = Size(),
 | |
|                          const std::vector<Point>& locations = std::vector<Point>()) const;
 | |
| 
 | |
|     //! with found weights output
 | |
|     CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
 | |
|                         CV_OUT std::vector<double>& weights,
 | |
|                         double hitThreshold = 0, Size winStride = Size(),
 | |
|                         Size padding = Size(),
 | |
|                         const std::vector<Point>& searchLocations = std::vector<Point>()) const;
 | |
|     //! without found weights output
 | |
|     virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
 | |
|                         double hitThreshold = 0, Size winStride = Size(),
 | |
|                         Size padding = Size(),
 | |
|                         const std::vector<Point>& searchLocations=std::vector<Point>()) const;
 | |
| 
 | |
|     //! with result weights output
 | |
|     CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
 | |
|                                   CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
 | |
|                                   Size winStride = Size(), Size padding = Size(), double scale = 1.05,
 | |
|                                   double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
 | |
|     //! without found weights output
 | |
|     virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
 | |
|                                   double hitThreshold = 0, Size winStride = Size(),
 | |
|                                   Size padding = Size(), double scale = 1.05,
 | |
|                                   double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
 | |
| 
 | |
|     CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
 | |
|                                  Size paddingTL = Size(), Size paddingBR = Size()) const;
 | |
| 
 | |
|     CV_WRAP static std::vector<float> getDefaultPeopleDetector();
 | |
|     CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
 | |
| 
 | |
|     CV_PROP Size winSize;
 | |
|     CV_PROP Size blockSize;
 | |
|     CV_PROP Size blockStride;
 | |
|     CV_PROP Size cellSize;
 | |
|     CV_PROP int nbins;
 | |
|     CV_PROP int derivAperture;
 | |
|     CV_PROP double winSigma;
 | |
|     CV_PROP int histogramNormType;
 | |
|     CV_PROP double L2HysThreshold;
 | |
|     CV_PROP bool gammaCorrection;
 | |
|     CV_PROP std::vector<float> svmDetector;
 | |
|     UMat oclSvmDetector;
 | |
|     float free_coef;
 | |
|     CV_PROP int nlevels;
 | |
|     CV_PROP bool signedGradient;
 | |
| 
 | |
| 
 | |
|     //! evaluate specified ROI and return confidence value for each location
 | |
|     virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
 | |
|                                    CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
 | |
|                                    double hitThreshold = 0, cv::Size winStride = Size(),
 | |
|                                    cv::Size padding = Size()) const;
 | |
| 
 | |
|     //! evaluate specified ROI and return confidence value for each location in multiple scales
 | |
|     virtual void detectMultiScaleROI(const cv::Mat& img,
 | |
|                                                        CV_OUT std::vector<cv::Rect>& foundLocations,
 | |
|                                                        std::vector<DetectionROI>& locations,
 | |
|                                                        double hitThreshold = 0,
 | |
|                                                        int groupThreshold = 0) const;
 | |
| 
 | |
|     //! read/parse Dalal's alt model file
 | |
|     void readALTModel(String modelfile);
 | |
|     void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
 | |
| };
 | |
| 
 | |
| //! @} objdetect
 | |
| 
 | |
| }
 | |
| 
 | |
| #include "opencv2/objdetect/detection_based_tracker.hpp"
 | |
| 
 | |
| #ifndef DISABLE_OPENCV_24_COMPATIBILITY
 | |
| #include "opencv2/objdetect/objdetect_c.h"
 | |
| #endif
 | |
| 
 | |
| #endif
 |