174 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			174 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "perf_precomp.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace testing;
 | |
| using namespace perf;
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////
 | |
| // HOG
 | |
| 
 | |
| DEF_PARAM_TEST_1(Image, string);
 | |
| 
 | |
| PERF_TEST_P(Image, ObjDetect_HOG,
 | |
|             Values<string>("gpu/hog/road.png",
 | |
|                            "gpu/caltech/image_00000009_0.png",
 | |
|                            "gpu/caltech/image_00000032_0.png",
 | |
|                            "gpu/caltech/image_00000165_0.png",
 | |
|                            "gpu/caltech/image_00000261_0.png",
 | |
|                            "gpu/caltech/image_00000469_0.png",
 | |
|                            "gpu/caltech/image_00000527_0.png",
 | |
|                            "gpu/caltech/image_00000574_0.png"))
 | |
| {
 | |
|     declare.time(300.0);
 | |
| 
 | |
|     const cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         const cv::gpu::GpuMat d_img(img);
 | |
|         std::vector<cv::Rect> gpu_found_locations;
 | |
| 
 | |
|         cv::gpu::HOGDescriptor d_hog;
 | |
|         d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
 | |
| 
 | |
|         TEST_CYCLE() d_hog.detectMultiScale(d_img, gpu_found_locations);
 | |
| 
 | |
|         SANITY_CHECK(gpu_found_locations);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         std::vector<cv::Rect> cpu_found_locations;
 | |
| 
 | |
|         cv::HOGDescriptor hog;
 | |
|         hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector());
 | |
| 
 | |
|         TEST_CYCLE() hog.detectMultiScale(img, cpu_found_locations);
 | |
| 
 | |
|         SANITY_CHECK(cpu_found_locations);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////
 | |
| // HaarClassifier
 | |
| 
 | |
| typedef pair<string, string> pair_string;
 | |
| DEF_PARAM_TEST_1(ImageAndCascade, pair_string);
 | |
| 
 | |
| PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier,
 | |
|             Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml")))
 | |
| {
 | |
|     const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::CascadeClassifier_GPU d_cascade;
 | |
|         ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
 | |
| 
 | |
|         const cv::gpu::GpuMat d_img(img);
 | |
|         cv::gpu::GpuMat objects_buffer;
 | |
|         int detections_num = 0;
 | |
| 
 | |
|         TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer);
 | |
| 
 | |
|         std::vector<cv::Rect> gpu_rects(detections_num);
 | |
|         cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]);
 | |
|         objects_buffer.colRange(0, detections_num).download(gpu_rects_mat);
 | |
|         cv::groupRectangles(gpu_rects, 3, 0.2);
 | |
|         SANITY_CHECK(gpu_rects);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::CascadeClassifier cascade;
 | |
|         ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml")));
 | |
| 
 | |
|         std::vector<cv::Rect> cpu_rects;
 | |
| 
 | |
|         TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);
 | |
| 
 | |
|         SANITY_CHECK(cpu_rects);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////
 | |
| // LBP cascade
 | |
| 
 | |
| PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier,
 | |
|             Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml")))
 | |
| {
 | |
|     const cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::CascadeClassifier_GPU d_cascade;
 | |
|         ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second)));
 | |
| 
 | |
|         const cv::gpu::GpuMat d_img(img);
 | |
|         cv::gpu::GpuMat objects_buffer;
 | |
|         int detections_num = 0;
 | |
| 
 | |
|         TEST_CYCLE() detections_num = d_cascade.detectMultiScale(d_img, objects_buffer);
 | |
| 
 | |
|         std::vector<cv::Rect> gpu_rects(detections_num);
 | |
|         cv::Mat gpu_rects_mat(1, detections_num, cv::DataType<cv::Rect>::type, &gpu_rects[0]);
 | |
|         objects_buffer.colRange(0, detections_num).download(gpu_rects_mat);
 | |
|         cv::groupRectangles(gpu_rects, 3, 0.2);
 | |
|         SANITY_CHECK(gpu_rects);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::CascadeClassifier cascade;
 | |
|         ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml")));
 | |
| 
 | |
|         std::vector<cv::Rect> cpu_rects;
 | |
| 
 | |
|         TEST_CYCLE() cascade.detectMultiScale(img, cpu_rects);
 | |
| 
 | |
|         SANITY_CHECK(cpu_rects);
 | |
|     }
 | |
| }
 | 
