1324 lines
53 KiB
C++
1324 lines
53 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_CORE_HPP__
|
|
#define __OPENCV_CORE_HPP__
|
|
|
|
#ifndef __cplusplus
|
|
# error core.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/cvdef.h"
|
|
#include "opencv2/core/version.hpp"
|
|
#include "opencv2/core/base.hpp"
|
|
#include "opencv2/core/cvstd.hpp"
|
|
#include "opencv2/core/traits.hpp"
|
|
#include "opencv2/core/matx.hpp"
|
|
#include "opencv2/core/types.hpp"
|
|
#include "opencv2/core/mat.hpp"
|
|
#include "opencv2/core/persistence.hpp"
|
|
|
|
/*! \namespace cv
|
|
Namespace where all the C++ OpenCV functionality resides
|
|
*/
|
|
namespace cv {
|
|
|
|
/*!
|
|
The standard OpenCV exception class.
|
|
Instances of the class are thrown by various functions and methods in the case of critical errors.
|
|
*/
|
|
class CV_EXPORTS Exception : public std::exception
|
|
{
|
|
public:
|
|
/*!
|
|
Default constructor
|
|
*/
|
|
Exception();
|
|
/*!
|
|
Full constructor. Normally the constuctor is not called explicitly.
|
|
Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
|
|
*/
|
|
Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
|
|
virtual ~Exception() throw();
|
|
|
|
/*!
|
|
\return the error description and the context as a text string.
|
|
*/
|
|
virtual const char *what() const throw();
|
|
void formatMessage();
|
|
|
|
String msg; ///< the formatted error message
|
|
|
|
int code; ///< error code @see CVStatus
|
|
String err; ///< error description
|
|
String func; ///< function name. Available only when the compiler supports getting it
|
|
String file; ///< source file name where the error has occured
|
|
int line; ///< line number in the source file where the error has occured
|
|
};
|
|
|
|
|
|
//! Signals an error and raises the exception.
|
|
|
|
/*!
|
|
By default the function prints information about the error to stderr,
|
|
then it either stops if setBreakOnError() had been called before or raises the exception.
|
|
It is possible to alternate error processing by using redirectError().
|
|
|
|
\param exc the exception raisen.
|
|
*/
|
|
//TODO: drop this version
|
|
CV_EXPORTS void error( const Exception& exc );
|
|
|
|
|
|
enum { SORT_EVERY_ROW = 0,
|
|
SORT_EVERY_COLUMN = 1,
|
|
SORT_ASCENDING = 0,
|
|
SORT_DESCENDING = 16
|
|
};
|
|
|
|
enum { COVAR_SCRAMBLED = 0,
|
|
COVAR_NORMAL = 1,
|
|
COVAR_USE_AVG = 2,
|
|
COVAR_SCALE = 4,
|
|
COVAR_ROWS = 8,
|
|
COVAR_COLS = 16
|
|
};
|
|
|
|
/*!
|
|
k-Means flags
|
|
*/
|
|
enum { KMEANS_RANDOM_CENTERS = 0, // Chooses random centers for k-Means initialization
|
|
KMEANS_PP_CENTERS = 2, // Uses k-Means++ algorithm for initialization
|
|
KMEANS_USE_INITIAL_LABELS = 1 // Uses the user-provided labels for K-Means initialization
|
|
};
|
|
|
|
enum { FILLED = -1,
|
|
LINE_4 = 4,
|
|
LINE_8 = 8,
|
|
LINE_AA = 16
|
|
};
|
|
|
|
enum { FONT_HERSHEY_SIMPLEX = 0,
|
|
FONT_HERSHEY_PLAIN = 1,
|
|
FONT_HERSHEY_DUPLEX = 2,
|
|
FONT_HERSHEY_COMPLEX = 3,
|
|
FONT_HERSHEY_TRIPLEX = 4,
|
|
FONT_HERSHEY_COMPLEX_SMALL = 5,
|
|
FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
|
|
FONT_HERSHEY_SCRIPT_COMPLEX = 7,
|
|
FONT_ITALIC = 16
|
|
};
|
|
|
|
enum { REDUCE_SUM = 0,
|
|
REDUCE_AVG = 1,
|
|
REDUCE_MAX = 2,
|
|
REDUCE_MIN = 3
|
|
};
|
|
|
|
|
|
//! swaps two matrices
|
|
CV_EXPORTS void swap(Mat& a, Mat& b);
|
|
|
|
//! swaps two umatrices
|
|
CV_EXPORTS void swap( UMat& a, UMat& b );
|
|
|
|
//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
|
|
CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
|
|
|
|
//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
|
|
CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
|
|
int top, int bottom, int left, int right,
|
|
int borderType, const Scalar& value = Scalar() );
|
|
|
|
//! adds one matrix to another (dst = src1 + src2)
|
|
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
|
|
InputArray mask = noArray(), int dtype = -1);
|
|
|
|
//! subtracts one matrix from another (dst = src1 - src2)
|
|
CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
|
|
InputArray mask = noArray(), int dtype = -1);
|
|
|
|
//! computes element-wise weighted product of the two arrays (dst = scale*src1*src2)
|
|
CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
|
|
OutputArray dst, double scale = 1, int dtype = -1);
|
|
|
|
//! computes element-wise weighted quotient of the two arrays (dst = scale * src1 / src2)
|
|
CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
|
|
double scale = 1, int dtype = -1);
|
|
|
|
//! computes element-wise weighted reciprocal of an array (dst = scale/src2)
|
|
CV_EXPORTS_W void divide(double scale, InputArray src2,
|
|
OutputArray dst, int dtype = -1);
|
|
|
|
//! adds scaled array to another one (dst = alpha*src1 + src2)
|
|
CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
|
|
|
|
//! computes weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma)
|
|
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
|
|
double beta, double gamma, OutputArray dst, int dtype = -1);
|
|
|
|
//! scales array elements, computes absolute values and converts the results to 8-bit unsigned integers: dst(i)=saturate_cast<uchar>abs(src(i)*alpha+beta)
|
|
CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
|
|
double alpha = 1, double beta = 0);
|
|
|
|
//! transforms array of numbers using a lookup table: dst(i)=lut(src(i))
|
|
CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
|
|
|
|
//! computes sum of array elements
|
|
CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
|
|
|
|
//! computes the number of nonzero array elements
|
|
CV_EXPORTS_W int countNonZero( InputArray src );
|
|
|
|
//! returns the list of locations of non-zero pixels
|
|
CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
|
|
|
|
//! computes mean value of selected array elements
|
|
CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
|
|
|
|
//! computes mean value and standard deviation of all or selected array elements
|
|
CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
|
|
InputArray mask=noArray());
|
|
|
|
//! computes norm of the selected array part
|
|
CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
|
|
|
|
//! computes norm of selected part of the difference between two arrays
|
|
CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
|
|
int normType = NORM_L2, InputArray mask = noArray());
|
|
|
|
//! computes PSNR image/video quality metric
|
|
CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
|
|
|
|
//! computes norm of a sparse matrix
|
|
CV_EXPORTS double norm( const SparseMat& src, int normType );
|
|
|
|
//! naive nearest neighbor finder
|
|
CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
|
|
OutputArray dist, int dtype, OutputArray nidx,
|
|
int normType = NORM_L2, int K = 0,
|
|
InputArray mask = noArray(), int update = 0,
|
|
bool crosscheck = false);
|
|
|
|
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
|
CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
|
|
int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
|
|
|
|
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
|
CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
|
|
|
|
//! finds global minimum and maximum array elements and returns their values and their locations
|
|
CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
|
|
CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
|
|
CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
|
|
|
|
CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
|
|
int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
|
|
|
|
//! finds global minimum and maximum sparse array elements and returns their values and their locations
|
|
CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
|
|
double* maxVal, int* minIdx = 0, int* maxIdx = 0);
|
|
|
|
//! transforms 2D matrix to 1D row or column vector by taking sum, minimum, maximum or mean value over all the rows
|
|
CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
|
|
|
|
//! makes multi-channel array out of several single-channel arrays
|
|
CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
|
|
|
|
//! makes multi-channel array out of several single-channel arrays
|
|
CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
|
|
|
|
//! copies each plane of a multi-channel array to a dedicated array
|
|
CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
|
|
|
|
//! copies each plane of a multi-channel array to a dedicated array
|
|
CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
|
|
|
|
//! copies selected channels from the input arrays to the selected channels of the output arrays
|
|
CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
|
|
const int* fromTo, size_t npairs);
|
|
|
|
CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
|
const int* fromTo, size_t npairs);
|
|
|
|
CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
|
const std::vector<int>& fromTo);
|
|
|
|
//! extracts a single channel from src (coi is 0-based index)
|
|
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
|
|
|
|
//! inserts a single channel to dst (coi is 0-based index)
|
|
CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
|
|
|
|
//! reverses the order of the rows, columns or both in a matrix
|
|
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
|
|
|
|
//! replicates the input matrix the specified number of times in the horizontal and/or vertical direction
|
|
CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
|
|
|
|
CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
|
|
|
|
CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
|
|
|
|
CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
|
|
|
|
CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
|
|
|
|
CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
|
|
|
|
CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
|
|
|
|
CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
|
|
|
|
//! computes bitwise conjunction of the two arrays (dst = src1 & src2)
|
|
CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
|
|
OutputArray dst, InputArray mask = noArray());
|
|
|
|
//! computes bitwise disjunction of the two arrays (dst = src1 | src2)
|
|
CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
|
|
OutputArray dst, InputArray mask = noArray());
|
|
|
|
//! computes bitwise exclusive-or of the two arrays (dst = src1 ^ src2)
|
|
CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
|
|
OutputArray dst, InputArray mask = noArray());
|
|
|
|
//! inverts each bit of array (dst = ~src)
|
|
CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
|
|
InputArray mask = noArray());
|
|
|
|
//! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2))
|
|
CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
|
|
|
|
//! set mask elements for those array elements which are within the element-specific bounding box (dst = lowerb <= src && src < upperb)
|
|
CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
|
|
InputArray upperb, OutputArray dst);
|
|
|
|
//! compares elements of two arrays (dst = src1 <cmpop> src2)
|
|
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
|
|
|
|
//! computes per-element minimum of two arrays (dst = min(src1, src2))
|
|
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
|
|
|
|
//! computes per-element maximum of two arrays (dst = max(src1, src2))
|
|
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
|
|
|
|
// the following overloads are needed to avoid conflicts with
|
|
// const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
|
|
//! computes per-element minimum of two arrays (dst = min(src1, src2))
|
|
CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
|
|
//! computes per-element maximum of two arrays (dst = max(src1, src2))
|
|
CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
|
|
//! computes per-element minimum of two arrays (dst = min(src1, src2))
|
|
CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
|
|
//! computes per-element maximum of two arrays (dst = max(src1, src2))
|
|
CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
|
|
|
|
//! computes square root of each matrix element (dst = src**0.5)
|
|
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
|
|
|
|
//! raises the input matrix elements to the specified power (b = a**power)
|
|
CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
|
|
|
|
//! computes exponent of each matrix element (dst = e**src)
|
|
CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
|
|
|
|
//! computes natural logarithm of absolute value of each matrix element: dst = log(abs(src))
|
|
CV_EXPORTS_W void log(InputArray src, OutputArray dst);
|
|
|
|
//! converts polar coordinates to Cartesian
|
|
CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
|
|
OutputArray x, OutputArray y, bool angleInDegrees = false);
|
|
|
|
//! converts Cartesian coordinates to polar
|
|
CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
|
|
OutputArray magnitude, OutputArray angle,
|
|
bool angleInDegrees = false);
|
|
|
|
//! computes angle (angle(i)) of each (x(i), y(i)) vector
|
|
CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
|
|
bool angleInDegrees = false);
|
|
|
|
//! computes magnitude (magnitude(i)) of each (x(i), y(i)) vector
|
|
CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
|
|
|
|
//! checks that each matrix element is within the specified range.
|
|
CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
|
|
double minVal = -DBL_MAX, double maxVal = DBL_MAX);
|
|
|
|
//! converts NaN's to the given number
|
|
CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
|
|
|
|
//! implements generalized matrix product algorithm GEMM from BLAS
|
|
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
|
|
InputArray src3, double beta, OutputArray dst, int flags = 0);
|
|
|
|
//! multiplies matrix by its transposition from the left or from the right
|
|
CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
|
|
InputArray delta = noArray(),
|
|
double scale = 1, int dtype = -1 );
|
|
|
|
//! transposes the matrix
|
|
CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
|
|
|
|
//! performs affine transformation of each element of multi-channel input matrix
|
|
CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
|
|
|
|
//! performs perspective transformation of each element of multi-channel input matrix
|
|
CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
|
|
|
|
//! extends the symmetrical matrix from the lower half or from the upper half
|
|
CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
|
|
|
|
//! initializes scaled identity matrix
|
|
CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
|
|
|
|
//! computes determinant of a square matrix
|
|
CV_EXPORTS_W double determinant(InputArray mtx);
|
|
|
|
//! computes trace of a matrix
|
|
CV_EXPORTS_W Scalar trace(InputArray mtx);
|
|
|
|
//! computes inverse or pseudo-inverse matrix
|
|
CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
|
|
|
|
//! solves linear system or a least-square problem
|
|
CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
|
|
OutputArray dst, int flags = DECOMP_LU);
|
|
|
|
//! sorts independently each matrix row or each matrix column
|
|
CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
|
|
|
|
//! sorts independently each matrix row or each matrix column
|
|
CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
|
|
|
|
//! finds real roots of a cubic polynomial
|
|
CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
|
|
|
|
//! finds real and complex roots of a polynomial
|
|
CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
|
|
|
|
//! finds eigenvalues and eigenvectors of a symmetric matrix
|
|
CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
|
|
OutputArray eigenvectors = noArray());
|
|
|
|
//! computes covariation matrix of a set of samples
|
|
CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
|
|
int flags, int ctype = CV_64F); //TODO: InputArrayOfArrays
|
|
|
|
//! computes covariation matrix of a set of samples
|
|
CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
|
|
InputOutputArray mean, int flags, int ctype = CV_64F);
|
|
|
|
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
|
|
OutputArray eigenvectors, int maxComponents = 0);
|
|
|
|
CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
|
|
OutputArray eigenvectors, double retainedVariance);
|
|
|
|
CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
|
|
InputArray eigenvectors, OutputArray result);
|
|
|
|
CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
|
|
InputArray eigenvectors, OutputArray result);
|
|
|
|
//! computes SVD of src
|
|
CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
|
|
|
|
//! performs back substitution for the previously computed SVD
|
|
CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
|
|
InputArray rhs, OutputArray dst );
|
|
|
|
//! computes Mahalanobis distance between two vectors: sqrt((v1-v2)'*icovar*(v1-v2)), where icovar is the inverse covariation matrix
|
|
CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
|
|
|
|
//! performs forward or inverse 1D or 2D Discrete Fourier Transformation
|
|
CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
|
|
|
|
//! performs inverse 1D or 2D Discrete Fourier Transformation
|
|
CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
|
|
|
|
//! performs forward or inverse 1D or 2D Discrete Cosine Transformation
|
|
CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
|
|
|
|
//! performs inverse 1D or 2D Discrete Cosine Transformation
|
|
CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
|
|
|
|
//! computes element-wise product of the two Fourier spectrums. The second spectrum can optionally be conjugated before the multiplication
|
|
CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
|
|
int flags, bool conjB = false);
|
|
|
|
//! computes the minimal vector size vecsize1 >= vecsize so that the dft() of the vector of length vecsize1 can be computed efficiently
|
|
CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
|
|
|
|
//! clusters the input data using k-Means algorithm
|
|
CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
|
|
TermCriteria criteria, int attempts,
|
|
int flags, OutputArray centers = noArray() );
|
|
|
|
//! returns the thread-local Random number generator
|
|
CV_EXPORTS RNG& theRNG();
|
|
|
|
//! fills array with uniformly-distributed random numbers from the range [low, high)
|
|
CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
|
|
|
|
//! fills array with normally-distributed random numbers with the specified mean and the standard deviation
|
|
CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
|
|
|
|
//! shuffles the input array elements
|
|
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
|
|
|
|
//! draws the line segment (pt1, pt2) in the image
|
|
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
|
|
int thickness = 1, int lineType = LINE_8, int shift = 0);
|
|
|
|
//! draws an arrow from pt1 to pt2 in the image
|
|
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
|
|
int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
|
|
|
|
//! draws the rectangle outline or a solid rectangle with the opposite corners pt1 and pt2 in the image
|
|
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
|
|
const Scalar& color, int thickness = 1,
|
|
int lineType = LINE_8, int shift = 0);
|
|
|
|
//! draws the rectangle outline or a solid rectangle covering rec in the image
|
|
CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec,
|
|
const Scalar& color, int thickness = 1,
|
|
int lineType = LINE_8, int shift = 0);
|
|
|
|
//! draws the circle outline or a solid circle in the image
|
|
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
|
|
const Scalar& color, int thickness = 1,
|
|
int lineType = LINE_8, int shift = 0);
|
|
|
|
//! draws an elliptic arc, ellipse sector or a rotated ellipse in the image
|
|
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
|
|
double angle, double startAngle, double endAngle,
|
|
const Scalar& color, int thickness = 1,
|
|
int lineType = LINE_8, int shift = 0);
|
|
|
|
//! draws a rotated ellipse in the image
|
|
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
|
|
int thickness = 1, int lineType = LINE_8);
|
|
|
|
//! draws a filled convex polygon in the image
|
|
CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts,
|
|
const Scalar& color, int lineType = LINE_8,
|
|
int shift = 0);
|
|
|
|
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
|
|
const Scalar& color, int lineType = LINE_8,
|
|
int shift = 0);
|
|
|
|
//! fills an area bounded by one or more polygons
|
|
CV_EXPORTS void fillPoly(Mat& img, const Point** pts,
|
|
const int* npts, int ncontours,
|
|
const Scalar& color, int lineType = LINE_8, int shift = 0,
|
|
Point offset = Point() );
|
|
|
|
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
|
|
const Scalar& color, int lineType = LINE_8, int shift = 0,
|
|
Point offset = Point() );
|
|
|
|
//! draws one or more polygonal curves
|
|
CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts,
|
|
int ncontours, bool isClosed, const Scalar& color,
|
|
int thickness = 1, int lineType = LINE_8, int shift = 0 );
|
|
|
|
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
|
|
bool isClosed, const Scalar& color,
|
|
int thickness = 1, int lineType = LINE_8, int shift = 0 );
|
|
|
|
//! draws contours in the image
|
|
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
|
|
int contourIdx, const Scalar& color,
|
|
int thickness = 1, int lineType = LINE_8,
|
|
InputArray hierarchy = noArray(),
|
|
int maxLevel = INT_MAX, Point offset = Point() );
|
|
|
|
//! clips the line segment by the rectangle Rect(0, 0, imgSize.width, imgSize.height)
|
|
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
|
|
|
|
//! clips the line segment by the rectangle imgRect
|
|
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
|
|
|
|
//! converts elliptic arc to a polygonal curve
|
|
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
|
|
int arcStart, int arcEnd, int delta,
|
|
CV_OUT std::vector<Point>& pts );
|
|
|
|
//! renders text string in the image
|
|
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
|
|
int fontFace, double fontScale, Scalar color,
|
|
int thickness = 1, int lineType = LINE_8,
|
|
bool bottomLeftOrigin = false );
|
|
|
|
//! returns bounding box of the text string
|
|
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
|
|
double fontScale, int thickness,
|
|
CV_OUT int* baseLine);
|
|
|
|
/*!
|
|
Principal Component Analysis
|
|
|
|
The class PCA is used to compute the special basis for a set of vectors.
|
|
The basis will consist of eigenvectors of the covariance matrix computed
|
|
from the input set of vectors. After PCA is performed, vectors can be transformed from
|
|
the original high-dimensional space to the subspace formed by a few most
|
|
prominent eigenvectors (called the principal components),
|
|
corresponding to the largest eigenvalues of the covariation matrix.
|
|
Thus the dimensionality of the vector and the correlation between the coordinates is reduced.
|
|
|
|
The following sample is the function that takes two matrices. The first one stores the set
|
|
of vectors (a row per vector) that is used to compute PCA, the second one stores another
|
|
"test" set of vectors (a row per vector) that are first compressed with PCA,
|
|
then reconstructed back and then the reconstruction error norm is computed and printed for each vector.
|
|
|
|
\code
|
|
using namespace cv;
|
|
|
|
PCA compressPCA(const Mat& pcaset, int maxComponents,
|
|
const Mat& testset, Mat& compressed)
|
|
{
|
|
PCA pca(pcaset, // pass the data
|
|
Mat(), // we do not have a pre-computed mean vector,
|
|
// so let the PCA engine to compute it
|
|
PCA::DATA_AS_ROW, // indicate that the vectors
|
|
// are stored as matrix rows
|
|
// (use PCA::DATA_AS_COL if the vectors are
|
|
// the matrix columns)
|
|
maxComponents // specify, how many principal components to retain
|
|
);
|
|
// if there is no test data, just return the computed basis, ready-to-use
|
|
if( !testset.data )
|
|
return pca;
|
|
CV_Assert( testset.cols == pcaset.cols );
|
|
|
|
compressed.create(testset.rows, maxComponents, testset.type());
|
|
|
|
Mat reconstructed;
|
|
for( int i = 0; i < testset.rows; i++ )
|
|
{
|
|
Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
|
|
// compress the vector, the result will be stored
|
|
// in the i-th row of the output matrix
|
|
pca.project(vec, coeffs);
|
|
// and then reconstruct it
|
|
pca.backProject(coeffs, reconstructed);
|
|
// and measure the error
|
|
printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
|
|
}
|
|
return pca;
|
|
}
|
|
\endcode
|
|
*/
|
|
class CV_EXPORTS PCA
|
|
{
|
|
public:
|
|
enum { DATA_AS_ROW = 0,
|
|
DATA_AS_COL = 1,
|
|
USE_AVG = 2
|
|
};
|
|
|
|
//! default constructor
|
|
PCA();
|
|
|
|
//! the constructor that performs PCA
|
|
PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
|
|
PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
|
|
|
|
//! operator that performs PCA. The previously stored data, if any, is released
|
|
PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
|
|
PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
|
|
|
|
//! projects vector from the original space to the principal components subspace
|
|
Mat project(InputArray vec) const;
|
|
|
|
//! projects vector from the original space to the principal components subspace
|
|
void project(InputArray vec, OutputArray result) const;
|
|
|
|
//! reconstructs the original vector from the projection
|
|
Mat backProject(InputArray vec) const;
|
|
|
|
//! reconstructs the original vector from the projection
|
|
void backProject(InputArray vec, OutputArray result) const;
|
|
|
|
//! write and load PCA matrix
|
|
void write(FileStorage& fs ) const;
|
|
void read(const FileNode& fs);
|
|
|
|
Mat eigenvectors; //!< eigenvectors of the covariation matrix
|
|
Mat eigenvalues; //!< eigenvalues of the covariation matrix
|
|
Mat mean; //!< mean value subtracted before the projection and added after the back projection
|
|
};
|
|
|
|
// Linear Discriminant Analysis
|
|
class CV_EXPORTS LDA
|
|
{
|
|
public:
|
|
// Initializes a LDA with num_components (default 0) and specifies how
|
|
// samples are aligned (default dataAsRow=true).
|
|
explicit LDA(int num_components = 0);
|
|
|
|
// Initializes and performs a Discriminant Analysis with Fisher's
|
|
// Optimization Criterion on given data in src and corresponding labels
|
|
// in labels. If 0 (or less) number of components are given, they are
|
|
// automatically determined for given data in computation.
|
|
LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
|
|
|
|
// Serializes this object to a given filename.
|
|
void save(const String& filename) const;
|
|
|
|
// Deserializes this object from a given filename.
|
|
void load(const String& filename);
|
|
|
|
// Serializes this object to a given cv::FileStorage.
|
|
void save(FileStorage& fs) const;
|
|
|
|
// Deserializes this object from a given cv::FileStorage.
|
|
void load(const FileStorage& node);
|
|
|
|
// Destructor.
|
|
~LDA();
|
|
|
|
//! Compute the discriminants for data in src and labels.
|
|
void compute(InputArrayOfArrays src, InputArray labels);
|
|
|
|
// Projects samples into the LDA subspace.
|
|
Mat project(InputArray src);
|
|
|
|
// Reconstructs projections from the LDA subspace.
|
|
Mat reconstruct(InputArray src);
|
|
|
|
// Returns the eigenvectors of this LDA.
|
|
Mat eigenvectors() const { return _eigenvectors; }
|
|
|
|
// Returns the eigenvalues of this LDA.
|
|
Mat eigenvalues() const { return _eigenvalues; }
|
|
|
|
static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
|
|
static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
|
|
|
|
protected:
|
|
bool _dataAsRow;
|
|
int _num_components;
|
|
Mat _eigenvectors;
|
|
Mat _eigenvalues;
|
|
|
|
void lda(InputArrayOfArrays src, InputArray labels);
|
|
};
|
|
|
|
/*!
|
|
Singular Value Decomposition class
|
|
|
|
The class is used to compute Singular Value Decomposition of a floating-point matrix and then
|
|
use it to solve least-square problems, under-determined linear systems, invert matrices,
|
|
compute condition numbers etc.
|
|
|
|
For a bit faster operation you can pass flags=SVD::MODIFY_A|... to modify the decomposed matrix
|
|
when it is not necessarily to preserve it. If you want to compute condition number of a matrix
|
|
or absolute value of its determinant - you do not need SVD::u or SVD::vt,
|
|
so you can pass flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that the full-size SVD::u and SVD::vt
|
|
must be computed, which is not necessary most of the time.
|
|
*/
|
|
class CV_EXPORTS SVD
|
|
{
|
|
public:
|
|
enum { MODIFY_A = 1,
|
|
NO_UV = 2,
|
|
FULL_UV = 4
|
|
};
|
|
|
|
//! the default constructor
|
|
SVD();
|
|
|
|
//! the constructor that performs SVD
|
|
SVD( InputArray src, int flags = 0 );
|
|
|
|
//! the operator that performs SVD. The previously allocated SVD::u, SVD::w are SVD::vt are released.
|
|
SVD& operator ()( InputArray src, int flags = 0 );
|
|
|
|
//! decomposes matrix and stores the results to user-provided matrices
|
|
static void compute( InputArray src, OutputArray w,
|
|
OutputArray u, OutputArray vt, int flags = 0 );
|
|
|
|
//! computes singular values of a matrix
|
|
static void compute( InputArray src, OutputArray w, int flags = 0 );
|
|
|
|
//! performs back substitution
|
|
static void backSubst( InputArray w, InputArray u,
|
|
InputArray vt, InputArray rhs,
|
|
OutputArray dst );
|
|
|
|
//! finds dst = arg min_{|dst|=1} |m*dst|
|
|
static void solveZ( InputArray src, OutputArray dst );
|
|
|
|
//! performs back substitution, so that dst is the solution or pseudo-solution of m*dst = rhs, where m is the decomposed matrix
|
|
void backSubst( InputArray rhs, OutputArray dst ) const;
|
|
|
|
template<typename _Tp, int m, int n, int nm> static
|
|
void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
|
|
|
|
template<typename _Tp, int m, int n, int nm> static
|
|
void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
|
|
|
|
template<typename _Tp, int m, int n, int nm, int nb> static
|
|
void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
|
|
|
|
Mat u, w, vt;
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
Line iterator class
|
|
|
|
The class is used to iterate over all the pixels on the raster line
|
|
segment connecting two specified points.
|
|
*/
|
|
class CV_EXPORTS LineIterator
|
|
{
|
|
public:
|
|
//! intializes the iterator
|
|
LineIterator( const Mat& img, Point pt1, Point pt2,
|
|
int connectivity = 8, bool leftToRight = false );
|
|
//! returns pointer to the current pixel
|
|
uchar* operator *();
|
|
//! prefix increment operator (++it). shifts iterator to the next pixel
|
|
LineIterator& operator ++();
|
|
//! postfix increment operator (it++). shifts iterator to the next pixel
|
|
LineIterator operator ++(int);
|
|
//! returns coordinates of the current pixel
|
|
Point pos() const;
|
|
|
|
uchar* ptr;
|
|
const uchar* ptr0;
|
|
int step, elemSize;
|
|
int err, count;
|
|
int minusDelta, plusDelta;
|
|
int minusStep, plusStep;
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
Fast Nearest Neighbor Search Class.
|
|
|
|
The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last
|
|
approximate (or accurate) nearest neighbor search in multi-dimensional spaces.
|
|
|
|
First, a set of vectors is passed to KDTree::KDTree() constructor
|
|
or KDTree::build() method, where it is reordered.
|
|
|
|
Then arbitrary vectors can be passed to KDTree::findNearest() methods, which
|
|
find the K nearest neighbors among the vectors from the initial set.
|
|
The user can balance between the speed and accuracy of the search by varying Emax
|
|
parameter, which is the number of leaves that the algorithm checks.
|
|
The larger parameter values yield more accurate results at the expense of lower processing speed.
|
|
|
|
\code
|
|
KDTree T(points, false);
|
|
const int K = 3, Emax = INT_MAX;
|
|
int idx[K];
|
|
float dist[K];
|
|
T.findNearest(query_vec, K, Emax, idx, 0, dist);
|
|
CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]);
|
|
\endcode
|
|
*/
|
|
class CV_EXPORTS_W KDTree
|
|
{
|
|
public:
|
|
/*!
|
|
The node of the search tree.
|
|
*/
|
|
struct Node
|
|
{
|
|
Node() : idx(-1), left(-1), right(-1), boundary(0.f) {}
|
|
Node(int _idx, int _left, int _right, float _boundary)
|
|
: idx(_idx), left(_left), right(_right), boundary(_boundary) {}
|
|
|
|
//! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point)
|
|
int idx;
|
|
//! node indices of the left and the right branches
|
|
int left, right;
|
|
//! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right
|
|
float boundary;
|
|
};
|
|
|
|
//! the default constructor
|
|
CV_WRAP KDTree();
|
|
//! the full constructor that builds the search tree
|
|
CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false);
|
|
//! the full constructor that builds the search tree
|
|
CV_WRAP KDTree(InputArray points, InputArray _labels,
|
|
bool copyAndReorderPoints = false);
|
|
//! builds the search tree
|
|
CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false);
|
|
//! builds the search tree
|
|
CV_WRAP void build(InputArray points, InputArray labels,
|
|
bool copyAndReorderPoints = false);
|
|
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
|
|
CV_WRAP int findNearest(InputArray vec, int K, int Emax,
|
|
OutputArray neighborsIdx,
|
|
OutputArray neighbors = noArray(),
|
|
OutputArray dist = noArray(),
|
|
OutputArray labels = noArray()) const;
|
|
//! finds all the points from the initial set that belong to the specified box
|
|
CV_WRAP void findOrthoRange(InputArray minBounds,
|
|
InputArray maxBounds,
|
|
OutputArray neighborsIdx,
|
|
OutputArray neighbors = noArray(),
|
|
OutputArray labels = noArray()) const;
|
|
//! returns vectors with the specified indices
|
|
CV_WRAP void getPoints(InputArray idx, OutputArray pts,
|
|
OutputArray labels = noArray()) const;
|
|
//! return a vector with the specified index
|
|
const float* getPoint(int ptidx, int* label = 0) const;
|
|
//! returns the search space dimensionality
|
|
CV_WRAP int dims() const;
|
|
|
|
std::vector<Node> nodes; //!< all the tree nodes
|
|
CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
|
|
CV_PROP std::vector<int> labels; //!< the parallel array of labels.
|
|
CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
|
|
CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
|
|
};
|
|
|
|
|
|
|
|
/*!
|
|
Random Number Generator
|
|
|
|
The class implements RNG using Multiply-with-Carry algorithm
|
|
*/
|
|
class CV_EXPORTS RNG
|
|
{
|
|
public:
|
|
enum { UNIFORM = 0,
|
|
NORMAL = 1
|
|
};
|
|
|
|
RNG();
|
|
RNG(uint64 state);
|
|
//! updates the state and returns the next 32-bit unsigned integer random number
|
|
unsigned next();
|
|
|
|
operator uchar();
|
|
operator schar();
|
|
operator ushort();
|
|
operator short();
|
|
operator unsigned();
|
|
//! returns a random integer sampled uniformly from [0, N).
|
|
unsigned operator ()(unsigned N);
|
|
unsigned operator ()();
|
|
operator int();
|
|
operator float();
|
|
operator double();
|
|
//! returns uniformly distributed integer random number from [a,b) range
|
|
int uniform(int a, int b);
|
|
//! returns uniformly distributed floating-point random number from [a,b) range
|
|
float uniform(float a, float b);
|
|
//! returns uniformly distributed double-precision floating-point random number from [a,b) range
|
|
double uniform(double a, double b);
|
|
void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
|
|
//! returns Gaussian random variate with mean zero.
|
|
double gaussian(double sigma);
|
|
|
|
uint64 state;
|
|
};
|
|
|
|
class CV_EXPORTS RNG_MT19937
|
|
{
|
|
public:
|
|
RNG_MT19937();
|
|
RNG_MT19937(unsigned s);
|
|
void seed(unsigned s);
|
|
|
|
unsigned next();
|
|
|
|
operator int();
|
|
operator unsigned();
|
|
operator float();
|
|
operator double();
|
|
|
|
unsigned operator ()(unsigned N);
|
|
unsigned operator ()();
|
|
|
|
// returns uniformly distributed integer random number from [a,b) range
|
|
int uniform(int a, int b);
|
|
// returns uniformly distributed floating-point random number from [a,b) range
|
|
float uniform(float a, float b);
|
|
// returns uniformly distributed double-precision floating-point random number from [a,b) range
|
|
double uniform(double a, double b);
|
|
|
|
private:
|
|
enum PeriodParameters {N = 624, M = 397};
|
|
unsigned state[N];
|
|
int mti;
|
|
};
|
|
|
|
|
|
|
|
/////////////////////////////// Formatted output of cv::Mat ///////////////////////////
|
|
|
|
class CV_EXPORTS Formatted
|
|
{
|
|
public:
|
|
virtual const char* next() = 0;
|
|
virtual void reset() = 0;
|
|
virtual ~Formatted();
|
|
};
|
|
|
|
|
|
class CV_EXPORTS Formatter
|
|
{
|
|
public:
|
|
enum { FMT_DEFAULT = 0,
|
|
FMT_MATLAB = 1,
|
|
FMT_CSV = 2,
|
|
FMT_PYTHON = 3,
|
|
FMT_NUMPY = 4,
|
|
FMT_C = 5
|
|
};
|
|
|
|
virtual ~Formatter();
|
|
|
|
virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
|
|
|
|
virtual void set32fPrecision(int p = 8) = 0;
|
|
virtual void set64fPrecision(int p = 16) = 0;
|
|
virtual void setMultiline(bool ml = true) = 0;
|
|
|
|
static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
|
|
|
|
};
|
|
|
|
|
|
|
|
//////////////////////////////////////// Algorithm ////////////////////////////////////
|
|
|
|
class CV_EXPORTS Algorithm;
|
|
class CV_EXPORTS AlgorithmInfo;
|
|
struct CV_EXPORTS AlgorithmInfoData;
|
|
|
|
template<typename _Tp> struct ParamType {};
|
|
|
|
/*!
|
|
Base class for high-level OpenCV algorithms
|
|
*/
|
|
class CV_EXPORTS_W Algorithm
|
|
{
|
|
public:
|
|
Algorithm();
|
|
virtual ~Algorithm();
|
|
String name() const;
|
|
|
|
template<typename _Tp> typename ParamType<_Tp>::member_type get(const String& name) const;
|
|
template<typename _Tp> typename ParamType<_Tp>::member_type get(const char* name) const;
|
|
|
|
CV_WRAP int getInt(const String& name) const;
|
|
CV_WRAP double getDouble(const String& name) const;
|
|
CV_WRAP bool getBool(const String& name) const;
|
|
CV_WRAP String getString(const String& name) const;
|
|
CV_WRAP Mat getMat(const String& name) const;
|
|
CV_WRAP std::vector<Mat> getMatVector(const String& name) const;
|
|
CV_WRAP Ptr<Algorithm> getAlgorithm(const String& name) const;
|
|
|
|
void set(const String& name, int value);
|
|
void set(const String& name, double value);
|
|
void set(const String& name, bool value);
|
|
void set(const String& name, const String& value);
|
|
void set(const String& name, const Mat& value);
|
|
void set(const String& name, const std::vector<Mat>& value);
|
|
void set(const String& name, const Ptr<Algorithm>& value);
|
|
template<typename _Tp> void set(const String& name, const Ptr<_Tp>& value);
|
|
|
|
CV_WRAP void setInt(const String& name, int value);
|
|
CV_WRAP void setDouble(const String& name, double value);
|
|
CV_WRAP void setBool(const String& name, bool value);
|
|
CV_WRAP void setString(const String& name, const String& value);
|
|
CV_WRAP void setMat(const String& name, const Mat& value);
|
|
CV_WRAP void setMatVector(const String& name, const std::vector<Mat>& value);
|
|
CV_WRAP void setAlgorithm(const String& name, const Ptr<Algorithm>& value);
|
|
template<typename _Tp> void setAlgorithm(const String& name, const Ptr<_Tp>& value);
|
|
|
|
void set(const char* name, int value);
|
|
void set(const char* name, double value);
|
|
void set(const char* name, bool value);
|
|
void set(const char* name, const String& value);
|
|
void set(const char* name, const Mat& value);
|
|
void set(const char* name, const std::vector<Mat>& value);
|
|
void set(const char* name, const Ptr<Algorithm>& value);
|
|
template<typename _Tp> void set(const char* name, const Ptr<_Tp>& value);
|
|
|
|
void setInt(const char* name, int value);
|
|
void setDouble(const char* name, double value);
|
|
void setBool(const char* name, bool value);
|
|
void setString(const char* name, const String& value);
|
|
void setMat(const char* name, const Mat& value);
|
|
void setMatVector(const char* name, const std::vector<Mat>& value);
|
|
void setAlgorithm(const char* name, const Ptr<Algorithm>& value);
|
|
template<typename _Tp> void setAlgorithm(const char* name, const Ptr<_Tp>& value);
|
|
|
|
CV_WRAP String paramHelp(const String& name) const;
|
|
int paramType(const char* name) const;
|
|
CV_WRAP int paramType(const String& name) const;
|
|
CV_WRAP void getParams(CV_OUT std::vector<String>& names) const;
|
|
|
|
|
|
virtual void write(FileStorage& fs) const;
|
|
virtual void read(const FileNode& fn);
|
|
|
|
typedef Algorithm* (*Constructor)(void);
|
|
typedef int (Algorithm::*Getter)() const;
|
|
typedef void (Algorithm::*Setter)(int);
|
|
|
|
CV_WRAP static void getList(CV_OUT std::vector<String>& algorithms);
|
|
CV_WRAP static Ptr<Algorithm> _create(const String& name);
|
|
template<typename _Tp> static Ptr<_Tp> create(const String& name);
|
|
|
|
virtual AlgorithmInfo* info() const /* TODO: make it = 0;*/ { return 0; }
|
|
};
|
|
|
|
|
|
class CV_EXPORTS AlgorithmInfo
|
|
{
|
|
public:
|
|
friend class Algorithm;
|
|
AlgorithmInfo(const String& name, Algorithm::Constructor create);
|
|
~AlgorithmInfo();
|
|
void get(const Algorithm* algo, const char* name, int argType, void* value) const;
|
|
void addParam_(Algorithm& algo, const char* name, int argType,
|
|
void* value, bool readOnly,
|
|
Algorithm::Getter getter, Algorithm::Setter setter,
|
|
const String& help=String());
|
|
String paramHelp(const char* name) const;
|
|
int paramType(const char* name) const;
|
|
void getParams(std::vector<String>& names) const;
|
|
|
|
void write(const Algorithm* algo, FileStorage& fs) const;
|
|
void read(Algorithm* algo, const FileNode& fn) const;
|
|
String name() const;
|
|
|
|
void addParam(Algorithm& algo, const char* name,
|
|
int& value, bool readOnly=false,
|
|
int (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(int)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
bool& value, bool readOnly=false,
|
|
int (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(int)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
double& value, bool readOnly=false,
|
|
double (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(double)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
String& value, bool readOnly=false,
|
|
String (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(const String&)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
Mat& value, bool readOnly=false,
|
|
Mat (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(const Mat&)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
std::vector<Mat>& value, bool readOnly=false,
|
|
std::vector<Mat> (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(const std::vector<Mat>&)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
Ptr<Algorithm>& value, bool readOnly=false,
|
|
Ptr<Algorithm> (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(const Ptr<Algorithm>&)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
float& value, bool readOnly=false,
|
|
float (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(float)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
unsigned int& value, bool readOnly=false,
|
|
unsigned int (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(unsigned int)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
uint64& value, bool readOnly=false,
|
|
uint64 (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(uint64)=0,
|
|
const String& help=String());
|
|
void addParam(Algorithm& algo, const char* name,
|
|
uchar& value, bool readOnly=false,
|
|
uchar (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(uchar)=0,
|
|
const String& help=String());
|
|
template<typename _Tp, typename _Base> void addParam(Algorithm& algo, const char* name,
|
|
Ptr<_Tp>& value, bool readOnly=false,
|
|
Ptr<_Tp> (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(const Ptr<_Tp>&)=0,
|
|
const String& help=String());
|
|
template<typename _Tp> void addParam(Algorithm& algo, const char* name,
|
|
Ptr<_Tp>& value, bool readOnly=false,
|
|
Ptr<_Tp> (Algorithm::*getter)()=0,
|
|
void (Algorithm::*setter)(const Ptr<_Tp>&)=0,
|
|
const String& help=String());
|
|
protected:
|
|
AlgorithmInfoData* data;
|
|
void set(Algorithm* algo, const char* name, int argType,
|
|
const void* value, bool force=false) const;
|
|
};
|
|
|
|
|
|
struct CV_EXPORTS Param
|
|
{
|
|
enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
|
|
|
|
Param();
|
|
Param(int _type, bool _readonly, int _offset,
|
|
Algorithm::Getter _getter=0,
|
|
Algorithm::Setter _setter=0,
|
|
const String& _help=String());
|
|
int type;
|
|
int offset;
|
|
bool readonly;
|
|
Algorithm::Getter getter;
|
|
Algorithm::Setter setter;
|
|
String help;
|
|
};
|
|
|
|
template<> struct ParamType<bool>
|
|
{
|
|
typedef bool const_param_type;
|
|
typedef bool member_type;
|
|
|
|
enum { type = Param::BOOLEAN };
|
|
};
|
|
|
|
template<> struct ParamType<int>
|
|
{
|
|
typedef int const_param_type;
|
|
typedef int member_type;
|
|
|
|
enum { type = Param::INT };
|
|
};
|
|
|
|
template<> struct ParamType<double>
|
|
{
|
|
typedef double const_param_type;
|
|
typedef double member_type;
|
|
|
|
enum { type = Param::REAL };
|
|
};
|
|
|
|
template<> struct ParamType<String>
|
|
{
|
|
typedef const String& const_param_type;
|
|
typedef String member_type;
|
|
|
|
enum { type = Param::STRING };
|
|
};
|
|
|
|
template<> struct ParamType<Mat>
|
|
{
|
|
typedef const Mat& const_param_type;
|
|
typedef Mat member_type;
|
|
|
|
enum { type = Param::MAT };
|
|
};
|
|
|
|
template<> struct ParamType<std::vector<Mat> >
|
|
{
|
|
typedef const std::vector<Mat>& const_param_type;
|
|
typedef std::vector<Mat> member_type;
|
|
|
|
enum { type = Param::MAT_VECTOR };
|
|
};
|
|
|
|
template<> struct ParamType<Algorithm>
|
|
{
|
|
typedef const Ptr<Algorithm>& const_param_type;
|
|
typedef Ptr<Algorithm> member_type;
|
|
|
|
enum { type = Param::ALGORITHM };
|
|
};
|
|
|
|
template<> struct ParamType<float>
|
|
{
|
|
typedef float const_param_type;
|
|
typedef float member_type;
|
|
|
|
enum { type = Param::FLOAT };
|
|
};
|
|
|
|
template<> struct ParamType<unsigned>
|
|
{
|
|
typedef unsigned const_param_type;
|
|
typedef unsigned member_type;
|
|
|
|
enum { type = Param::UNSIGNED_INT };
|
|
};
|
|
|
|
template<> struct ParamType<uint64>
|
|
{
|
|
typedef uint64 const_param_type;
|
|
typedef uint64 member_type;
|
|
|
|
enum { type = Param::UINT64 };
|
|
};
|
|
|
|
template<> struct ParamType<uchar>
|
|
{
|
|
typedef uchar const_param_type;
|
|
typedef uchar member_type;
|
|
|
|
enum { type = Param::UCHAR };
|
|
};
|
|
|
|
} //namespace cv
|
|
|
|
#include "opencv2/core/operations.hpp"
|
|
#include "opencv2/core/cvstd.inl.hpp"
|
|
|
|
#endif /*__OPENCV_CORE_HPP__*/
|