386 lines
11 KiB
C++
386 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef _CV_GCGRAPH_H_
|
|
#define _CV_GCGRAPH_H_
|
|
|
|
template <class TWeight> class GCGraph
|
|
{
|
|
public:
|
|
GCGraph();
|
|
GCGraph( unsigned int vtxCount, unsigned int edgeCount );
|
|
~GCGraph();
|
|
void create( unsigned int vtxCount, unsigned int edgeCount );
|
|
int addVtx();
|
|
void addEdges( int i, int j, TWeight w, TWeight revw );
|
|
void addTermWeights( int i, TWeight sourceW, TWeight sinkW );
|
|
TWeight maxFlow();
|
|
bool inSourceSegment( int i );
|
|
private:
|
|
class Vtx
|
|
{
|
|
public:
|
|
Vtx *next; // initialized and used in maxFlow() only
|
|
int parent;
|
|
int first;
|
|
int ts;
|
|
int dist;
|
|
TWeight weight;
|
|
uchar t;
|
|
};
|
|
class Edge
|
|
{
|
|
public:
|
|
int dst;
|
|
int next;
|
|
TWeight weight;
|
|
};
|
|
|
|
std::vector<Vtx> vtcs;
|
|
std::vector<Edge> edges;
|
|
TWeight flow;
|
|
};
|
|
|
|
template <class TWeight>
|
|
GCGraph<TWeight>::GCGraph()
|
|
{
|
|
flow = 0;
|
|
}
|
|
template <class TWeight>
|
|
GCGraph<TWeight>::GCGraph( unsigned int vtxCount, unsigned int edgeCount )
|
|
{
|
|
create( vtxCount, edgeCount );
|
|
}
|
|
template <class TWeight>
|
|
GCGraph<TWeight>::~GCGraph()
|
|
{
|
|
}
|
|
template <class TWeight>
|
|
void GCGraph<TWeight>::create( unsigned int vtxCount, unsigned int edgeCount )
|
|
{
|
|
vtcs.reserve( vtxCount );
|
|
edges.reserve( edgeCount + 2 );
|
|
flow = 0;
|
|
}
|
|
|
|
template <class TWeight>
|
|
int GCGraph<TWeight>::addVtx()
|
|
{
|
|
Vtx v;
|
|
memset( &v, 0, sizeof(Vtx));
|
|
vtcs.push_back(v);
|
|
return (int)vtcs.size() - 1;
|
|
}
|
|
|
|
template <class TWeight>
|
|
void GCGraph<TWeight>::addEdges( int i, int j, TWeight w, TWeight revw )
|
|
{
|
|
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
|
CV_Assert( j>=0 && j<(int)vtcs.size() );
|
|
CV_Assert( w>=0 && revw>=0 );
|
|
CV_Assert( i != j );
|
|
|
|
if( !edges.size() )
|
|
edges.resize( 2 );
|
|
|
|
Edge fromI, toI;
|
|
fromI.dst = j;
|
|
fromI.next = vtcs[i].first;
|
|
fromI.weight = w;
|
|
vtcs[i].first = (int)edges.size();
|
|
edges.push_back( fromI );
|
|
|
|
toI.dst = i;
|
|
toI.next = vtcs[j].first;
|
|
toI.weight = revw;
|
|
vtcs[j].first = (int)edges.size();
|
|
edges.push_back( toI );
|
|
}
|
|
|
|
template <class TWeight>
|
|
void GCGraph<TWeight>::addTermWeights( int i, TWeight sourceW, TWeight sinkW )
|
|
{
|
|
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
|
|
|
TWeight dw = vtcs[i].weight;
|
|
if( dw > 0 )
|
|
sourceW += dw;
|
|
else
|
|
sinkW -= dw;
|
|
flow += (sourceW < sinkW) ? sourceW : sinkW;
|
|
vtcs[i].weight = sourceW - sinkW;
|
|
}
|
|
|
|
template <class TWeight>
|
|
TWeight GCGraph<TWeight>::maxFlow()
|
|
{
|
|
const int TERMINAL = -1, ORPHAN = -2;
|
|
Vtx stub, *nilNode = &stub, *first = nilNode, *last = nilNode;
|
|
int curr_ts = 0;
|
|
stub.next = nilNode;
|
|
Vtx *vtxPtr = &vtcs[0];
|
|
Edge *edgePtr = &edges[0];
|
|
|
|
std::vector<Vtx*> orphans;
|
|
|
|
// initialize the active queue and the graph vertices
|
|
for( int i = 0; i < (int)vtcs.size(); i++ )
|
|
{
|
|
Vtx* v = vtxPtr + i;
|
|
v->ts = 0;
|
|
if( v->weight != 0 )
|
|
{
|
|
last = last->next = v;
|
|
v->dist = 1;
|
|
v->parent = TERMINAL;
|
|
v->t = v->weight < 0;
|
|
}
|
|
else
|
|
v->parent = 0;
|
|
}
|
|
first = first->next;
|
|
last->next = nilNode;
|
|
nilNode->next = 0;
|
|
|
|
// run the search-path -> augment-graph -> restore-trees loop
|
|
for(;;)
|
|
{
|
|
Vtx* v, *u;
|
|
int e0 = -1, ei = 0, ej = 0;
|
|
TWeight minWeight, weight;
|
|
uchar vt;
|
|
|
|
// grow S & T search trees, find an edge connecting them
|
|
while( first != nilNode )
|
|
{
|
|
v = first;
|
|
if( v->parent )
|
|
{
|
|
vt = v->t;
|
|
for( ei = v->first; ei != 0; ei = edgePtr[ei].next )
|
|
{
|
|
if( edgePtr[ei^vt].weight == 0 )
|
|
continue;
|
|
u = vtxPtr+edgePtr[ei].dst;
|
|
if( !u->parent )
|
|
{
|
|
u->t = vt;
|
|
u->parent = ei ^ 1;
|
|
u->ts = v->ts;
|
|
u->dist = v->dist + 1;
|
|
if( !u->next )
|
|
{
|
|
u->next = nilNode;
|
|
last = last->next = u;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if( u->t != vt )
|
|
{
|
|
e0 = ei ^ vt;
|
|
break;
|
|
}
|
|
|
|
if( u->dist > v->dist+1 && u->ts <= v->ts )
|
|
{
|
|
// reassign the parent
|
|
u->parent = ei ^ 1;
|
|
u->ts = v->ts;
|
|
u->dist = v->dist + 1;
|
|
}
|
|
}
|
|
if( e0 > 0 )
|
|
break;
|
|
}
|
|
// exclude the vertex from the active list
|
|
first = first->next;
|
|
v->next = 0;
|
|
}
|
|
|
|
if( e0 <= 0 )
|
|
break;
|
|
|
|
// find the minimum edge weight along the path
|
|
minWeight = edgePtr[e0].weight;
|
|
assert( minWeight > 0 );
|
|
// k = 1: source tree, k = 0: destination tree
|
|
for( int k = 1; k >= 0; k-- )
|
|
{
|
|
for( v = vtxPtr+edgePtr[e0^k].dst;; v = vtxPtr+edgePtr[ei].dst )
|
|
{
|
|
if( (ei = v->parent) < 0 )
|
|
break;
|
|
weight = edgePtr[ei^k].weight;
|
|
minWeight = MIN(minWeight, weight);
|
|
assert( minWeight > 0 );
|
|
}
|
|
weight = fabs(v->weight);
|
|
minWeight = MIN(minWeight, weight);
|
|
assert( minWeight > 0 );
|
|
}
|
|
|
|
// modify weights of the edges along the path and collect orphans
|
|
edgePtr[e0].weight -= minWeight;
|
|
edgePtr[e0^1].weight += minWeight;
|
|
flow += minWeight;
|
|
|
|
// k = 1: source tree, k = 0: destination tree
|
|
for( int k = 1; k >= 0; k-- )
|
|
{
|
|
for( v = vtxPtr+edgePtr[e0^k].dst;; v = vtxPtr+edgePtr[ei].dst )
|
|
{
|
|
if( (ei = v->parent) < 0 )
|
|
break;
|
|
edgePtr[ei^(k^1)].weight += minWeight;
|
|
if( (edgePtr[ei^k].weight -= minWeight) == 0 )
|
|
{
|
|
orphans.push_back(v);
|
|
v->parent = ORPHAN;
|
|
}
|
|
}
|
|
|
|
v->weight = v->weight + minWeight*(1-k*2);
|
|
if( v->weight == 0 )
|
|
{
|
|
orphans.push_back(v);
|
|
v->parent = ORPHAN;
|
|
}
|
|
}
|
|
|
|
// restore the search trees by finding new parents for the orphans
|
|
curr_ts++;
|
|
while( !orphans.empty() )
|
|
{
|
|
Vtx* v2 = orphans.back();
|
|
orphans.pop_back();
|
|
|
|
int d, minDist = INT_MAX;
|
|
e0 = 0;
|
|
vt = v2->t;
|
|
|
|
for( ei = v2->first; ei != 0; ei = edgePtr[ei].next )
|
|
{
|
|
if( edgePtr[ei^(vt^1)].weight == 0 )
|
|
continue;
|
|
u = vtxPtr+edgePtr[ei].dst;
|
|
if( u->t != vt || u->parent == 0 )
|
|
continue;
|
|
// compute the distance to the tree root
|
|
for( d = 0;; )
|
|
{
|
|
if( u->ts == curr_ts )
|
|
{
|
|
d += u->dist;
|
|
break;
|
|
}
|
|
ej = u->parent;
|
|
d++;
|
|
if( ej < 0 )
|
|
{
|
|
if( ej == ORPHAN )
|
|
d = INT_MAX-1;
|
|
else
|
|
{
|
|
u->ts = curr_ts;
|
|
u->dist = 1;
|
|
}
|
|
break;
|
|
}
|
|
u = vtxPtr+edgePtr[ej].dst;
|
|
}
|
|
|
|
// update the distance
|
|
if( ++d < INT_MAX )
|
|
{
|
|
if( d < minDist )
|
|
{
|
|
minDist = d;
|
|
e0 = ei;
|
|
}
|
|
for( u = vtxPtr+edgePtr[ei].dst; u->ts != curr_ts; u = vtxPtr+edgePtr[u->parent].dst )
|
|
{
|
|
u->ts = curr_ts;
|
|
u->dist = --d;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( (v2->parent = e0) > 0 )
|
|
{
|
|
v2->ts = curr_ts;
|
|
v2->dist = minDist;
|
|
continue;
|
|
}
|
|
|
|
/* no parent is found */
|
|
v2->ts = 0;
|
|
for( ei = v2->first; ei != 0; ei = edgePtr[ei].next )
|
|
{
|
|
u = vtxPtr+edgePtr[ei].dst;
|
|
ej = u->parent;
|
|
if( u->t != vt || !ej )
|
|
continue;
|
|
if( edgePtr[ei^(vt^1)].weight && !u->next )
|
|
{
|
|
u->next = nilNode;
|
|
last = last->next = u;
|
|
}
|
|
if( ej > 0 && vtxPtr+edgePtr[ej].dst == v2 )
|
|
{
|
|
orphans.push_back(u);
|
|
u->parent = ORPHAN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return flow;
|
|
}
|
|
|
|
template <class TWeight>
|
|
bool GCGraph<TWeight>::inSourceSegment( int i )
|
|
{
|
|
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
|
return vtcs[i].t == 0;
|
|
};
|
|
|
|
#endif
|