opencv/modules/contrib/src/imagelogpolprojection.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

450 lines
22 KiB
C++

/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
** Creation - enhancement process 2007-2011
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
** License Agreement
** For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
** For Human Visual System tools (hvstools)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
** this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
** this list of conditions and the following disclaimer in the documentation
** and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/
#include "precomp.hpp"
#include "imagelogpolprojection.hpp"
#include <cmath>
#include <iostream>
// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
namespace cv
{
// constructor
ImageLogPolProjection::ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorModeCapable)
:BasicRetinaFilter(nbRows, nbColumns),
_sampledFrame(0),
_tempBuffer(_localBuffer),
_transformTable(0),
_irregularLPfilteredFrame(_filterOutput)
{
_inputDoubleNBpixels=nbRows*nbColumns*2;
_selectedProjection = projection;
_reductionFactor=0;
_initOK=false;
_usefullpixelIndex=0;
_colorModeCapable=colorModeCapable;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::allocating"<<std::endl;
#endif
if (_colorModeCapable)
{
_tempBuffer.resize(nbRows*nbColumns*3);
}
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::done"<<std::endl;
#endif
clearAllBuffers();
}
// destructor
ImageLogPolProjection::~ImageLogPolProjection()
{
}
// reset buffers method
void ImageLogPolProjection::clearAllBuffers()
{
_sampledFrame=0;
_tempBuffer=0;
BasicRetinaFilter::clearAllBuffers();
}
/**
* resize retina color filter object (resize all allocated buffers)
* @param NBrows: the new height size
* @param NBcolumns: the new width size
*/
void ImageLogPolProjection::resize(const unsigned int NBrows, const unsigned int NBcolumns)
{
BasicRetinaFilter::resize(NBrows, NBcolumns);
initProjection(_reductionFactor, _samplingStrenght);
// reset buffers method
clearAllBuffers();
}
// init functions depending on the projection type
bool ImageLogPolProjection::initProjection(const double reductionFactor, const double samplingStrenght)
{
switch(_selectedProjection)
{
case RETINALOGPROJECTION:
return _initLogRetinaSampling(reductionFactor, samplingStrenght);
break;
case CORTEXLOGPOLARPROJECTION:
return _initLogPolarCortexSampling(reductionFactor, samplingStrenght);
break;
default:
std::cout<<"ImageLogPolProjection::no projection setted up... performing default retina projection... take care"<<std::endl;
return _initLogRetinaSampling(reductionFactor, samplingStrenght);
break;
}
}
// -> private init functions dedicated to each projection
bool ImageLogPolProjection::_initLogRetinaSampling(const double reductionFactor, const double samplingStrenght)
{
_initOK=false;
if (_selectedProjection!=RETINALOGPROJECTION)
{
std::cerr<<"ImageLogPolProjection::initLogRetinaSampling: could not initialize logPolar projection for a log projection system\n -> you probably chose the wrong init function, use initLogPolarCortexSampling() instead"<<std::endl;
return false;
}
if (reductionFactor<1.0)
{
std::cerr<<"ImageLogPolProjection::initLogRetinaSampling: reduction factor must be superior to 0, skeeping initialisation..."<<std::endl;
return false;
}
// compute image output size
_outputNBrows=predictOutputSize(this->getNBrows(), reductionFactor);
_outputNBcolumns=predictOutputSize(this->getNBcolumns(), reductionFactor);
_outputNBpixels=_outputNBrows*_outputNBcolumns;
_outputDoubleNBpixels=_outputNBrows*_outputNBcolumns*2;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: Log resampled image resampling factor: "<<reductionFactor<<", strenght:"<<samplingStrenght<<std::endl;
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: Log resampled image size: "<<_outputNBrows<<"*"<<_outputNBcolumns<<std::endl;
#endif
// setup progressive prefilter that will be applied BEFORE log sampling
setProgressiveFilterConstants_CentredAccuracy(0.f, 0.f, 0.99f);
// (re)create the image output buffer and transform table if the reduction factor changed
_sampledFrame.resize(_outputNBpixels*(1+(unsigned int)_colorModeCapable*2));
// specifiying new reduction factor after preliminar checks
_reductionFactor=reductionFactor;
_samplingStrenght=samplingStrenght;
// compute the rlim for symetric rows/columns sampling, then, the rlim is based on the smallest dimension
_minDimension=(double)(_filterOutput.getNBrows() < _filterOutput.getNBcolumns() ? _filterOutput.getNBrows() : _filterOutput.getNBcolumns());
// input frame dimensions dependent log sampling:
//double rlim=1.0/reductionFactor*(minDimension/2.0+samplingStrenght);
// input frame dimensions INdependent log sampling:
_azero=(1.0+reductionFactor*std::sqrt(samplingStrenght))/(reductionFactor*reductionFactor*samplingStrenght-1.0);
_alim=(1.0+_azero)/reductionFactor;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: rlim= "<<rlim<<std::endl;
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: alim= "<<alim<<std::endl;
#endif
// get half frame size
unsigned int halfOutputRows = _outputNBrows/2-1;
unsigned int halfOutputColumns = _outputNBcolumns/2-1;
unsigned int halfInputRows = _filterOutput.getNBrows()/2-1;
unsigned int halfInputColumns = _filterOutput.getNBcolumns()/2-1;
// computing log sampling matrix by computing quarters of images
// the original new image center (_filterOutput.getNBrows()/2, _filterOutput.getNBcolumns()/2) being at coordinate (_filterOutput.getNBrows()/(2*_reductionFactor), _filterOutput.getNBcolumns()/(2*_reductionFactor))
// -> use a temporary transform table which is bigger than the final one, we only report pixels coordinates that are included in the sampled picture
std::valarray<unsigned int> tempTransformTable(2*_outputNBpixels); // the structure would be: (pixelInputCoordinate n)(pixelOutputCoordinate n)(pixelInputCoordinate n+1)(pixelOutputCoordinate n+1)
_usefullpixelIndex=0;
double rMax=0;
halfInputRows<halfInputColumns ? rMax=(double)(halfInputRows*halfInputRows):rMax=(double)(halfInputColumns*halfInputColumns);
for (unsigned int idRow=0;idRow<halfOutputRows; ++idRow)
{
for (unsigned int idColumn=0;idColumn<halfOutputColumns; ++idColumn)
{
// get the pixel position in the original picture
// -> input frame dimensions dependent log sampling:
//double scale = samplingStrenght/(rlim-(double)std::sqrt(idRow*idRow+idColumn*idColumn));
// -> input frame dimensions INdependent log sampling:
double scale=getOriginalRadiusLength((double)std::sqrt((double)(idRow*idRow+idColumn*idColumn)));
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale= "<<scale<<std::endl;
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale2= "<<scale2<<std::endl;
#endif
if (scale < 0) ///check it later
scale = 10000;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
// std::cout<<"ImageLogPolProjection::initLogRetinaSampling: scale= "<<scale<<std::endl;
#endif
unsigned int u=(unsigned int)floor((double)idRow*scale);
unsigned int v=(unsigned int)floor((double)idColumn*scale);
// manage border effects
double length=u*u+v*v;
double radiusRatio=std::sqrt(rMax/length);
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::(inputH, inputW)="<<halfInputRows<<", "<<halfInputColumns<<", Rmax2="<<rMax<<std::endl;
std::cout<<"before ==> ImageLogPolProjection::(u, v)="<<u<<", "<<v<<", r="<<u*u+v*v<<std::endl;
std::cout<<"ratio ="<<radiusRatio<<std::endl;
#endif
if (radiusRatio < 1.0)
{
u=(unsigned int)floor(radiusRatio*double(u));
v=(unsigned int)floor(radiusRatio*double(v));
}
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"after ==> ImageLogPolProjection::(u, v)="<<u<<", "<<v<<", r="<<u*u+v*v<<std::endl;
std::cout<<"ImageLogPolProjection::("<<(halfOutputRows-idRow)<<", "<<idColumn+halfOutputColumns<<") <- ("<<halfInputRows-u<<", "<<v+halfInputColumns<<")"<<std::endl;
std::cout<<(halfOutputRows-idRow)+(halfOutputColumns+idColumn)*_outputNBrows<<" -> "<<(halfInputRows-u)+_filterOutput.getNBrows()*(halfInputColumns+v)<<std::endl;
#endif
if ((u<halfInputRows)&&(v<halfInputColumns))
{
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"*** VALID ***"<<std::endl;
#endif
// set pixel coordinate of the input picture in the transform table at the current log sampled pixel
// 1st quadrant
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns+idColumn)+(halfOutputRows-idRow)*_outputNBcolumns;
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows-u)+(halfInputColumns+v);
// 2nd quadrant
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns+idColumn)+(halfOutputRows+idRow)*_outputNBcolumns;
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows+u)+(halfInputColumns+v);
// 3rd quadrant
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns-idColumn)+(halfOutputRows-idRow)*_outputNBcolumns;
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows-u)+(halfInputColumns-v);
// 4td quadrant
tempTransformTable[_usefullpixelIndex++]=(halfOutputColumns-idColumn)+(halfOutputRows+idRow)*_outputNBcolumns;
tempTransformTable[_usefullpixelIndex++]=_filterOutput.getNBcolumns()*(halfInputRows+u)+(halfInputColumns-v);
}
}
}
// (re)creating and filling the transform table
_transformTable.resize(_usefullpixelIndex);
memcpy(&_transformTable[0], &tempTransformTable[0], sizeof(unsigned int)*_usefullpixelIndex);
// reset all buffers
clearAllBuffers();
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::initLogRetinaSampling: init done successfully"<<std::endl;
#endif
_initOK=true;
return _initOK;
}
bool ImageLogPolProjection::_initLogPolarCortexSampling(const double reductionFactor, const double)
{
_initOK=false;
if (_selectedProjection!=CORTEXLOGPOLARPROJECTION)
{
std::cerr<<"ImageLogPolProjection::could not initialize log projection for a logPolar projection system\n -> you probably chose the wrong init function, use initLogRetinaSampling() instead"<<std::endl;
return false;
}
if (reductionFactor<1.0)
{
std::cerr<<"ImageLogPolProjection::reduction factor must be superior to 0, skeeping initialisation..."<<std::endl;
return false;
}
// compute the smallest image size
unsigned int minDimension=(_filterOutput.getNBrows() < _filterOutput.getNBcolumns() ? _filterOutput.getNBrows() : _filterOutput.getNBcolumns());
// specifiying new reduction factor after preliminar checks
_reductionFactor=reductionFactor;
// compute image output size
_outputNBrows=(unsigned int)((double)minDimension/reductionFactor);
_outputNBcolumns=(unsigned int)((double)minDimension/reductionFactor);
_outputNBpixels=_outputNBrows*_outputNBcolumns;
_outputDoubleNBpixels=_outputNBrows*_outputNBcolumns*2;
// get half frame size
//unsigned int halfOutputRows = _outputNBrows/2-1;
//unsigned int halfOutputColumns = _outputNBcolumns/2-1;
unsigned int halfInputRows = _filterOutput.getNBrows()/2-1;
unsigned int halfInputColumns = _filterOutput.getNBcolumns()/2-1;
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::Log resampled image size: "<<_outputNBrows<<"*"<<_outputNBcolumns<<std::endl;
#endif
// setup progressive prefilter that will be applied BEFORE log sampling
setProgressiveFilterConstants_CentredAccuracy(0.f, 0.f, 0.99f);
// (re)create the image output buffer and transform table if the reduction factor changed
_sampledFrame.resize(_outputNBpixels*(1+(unsigned int)_colorModeCapable*2));
// create the radius and orientation axis and fill them, radius E [0;1], orientation E[-pi, pi]
std::valarray<double> radiusAxis(_outputNBcolumns);
double radiusStep=2.30/(double)_outputNBcolumns;
for (unsigned int i=0;i<_outputNBcolumns;++i)
{
radiusAxis[i]=i*radiusStep;
}
std::valarray<double> orientationAxis(_outputNBrows);
double orientationStep=-2.0*CV_PI/(double)_outputNBrows;
for (unsigned int io=0;io<_outputNBrows;++io)
{
orientationAxis[io]=io*orientationStep;
}
// -> use a temporay transform table which is bigger than the final one, we only report pixels coordinates that are included in the sampled picture
std::valarray<unsigned int> tempTransformTable(2*_outputNBpixels); // the structure would be: (pixelInputCoordinate n)(pixelOutputCoordinate n)(pixelInputCoordinate n+1)(pixelOutputCoordinate n+1)
_usefullpixelIndex=0;
//std::cout<<"ImageLogPolProjection::Starting cortex projection"<<std::endl;
// compute transformation, get theta and Radius in reagrd of the output sampled pixel
double diagonalLenght=std::sqrt((double)(_outputNBcolumns*_outputNBcolumns+_outputNBrows*_outputNBrows));
for (unsigned int radiusIndex=0;radiusIndex<_outputNBcolumns;++radiusIndex)
for(unsigned int orientationIndex=0;orientationIndex<_outputNBrows;++orientationIndex)
{
double x=1.0+sinh(radiusAxis[radiusIndex])*cos(orientationAxis[orientationIndex]);
double y=sinh(radiusAxis[radiusIndex])*sin(orientationAxis[orientationIndex]);
// get the input picture coordinate
double R=diagonalLenght*std::sqrt(x*x+y*y)/(5.0+std::sqrt(x*x+y*y));
double theta=atan2(y,x);
// convert input polar coord into cartesian/C compatble coordinate
unsigned int columnIndex=(unsigned int)(cos(theta)*R)+halfInputColumns;
unsigned int rowIndex=(unsigned int)(sin(theta)*R)+halfInputRows;
//std::cout<<"ImageLogPolProjection::R="<<R<<" / Theta="<<theta<<" / (x, y)="<<columnIndex<<", "<<rowIndex<<std::endl;
if ((columnIndex<_filterOutput.getNBcolumns())&&(columnIndex>0)&&(rowIndex<_filterOutput.getNBrows())&&(rowIndex>0))
{
// set coordinate
tempTransformTable[_usefullpixelIndex++]=radiusIndex+orientationIndex*_outputNBcolumns;
tempTransformTable[_usefullpixelIndex++]= columnIndex+rowIndex*_filterOutput.getNBcolumns();
}
}
// (re)creating and filling the transform table
_transformTable.resize(_usefullpixelIndex);
memcpy(&_transformTable[0], &tempTransformTable[0], sizeof(unsigned int)*_usefullpixelIndex);
// reset all buffers
clearAllBuffers();
_initOK=true;
return true;
}
// action function
std::valarray<float> &ImageLogPolProjection::runProjection(const std::valarray<float> &inputFrame, const bool colorMode)
{
if (_colorModeCapable&&colorMode)
{
// progressive filtering and storage of the result in _tempBuffer
_spatiotemporalLPfilter_Irregular(get_data(inputFrame), &_irregularLPfilteredFrame[0]);
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]); // warning, temporal issue may occur, if the temporal constant is not NULL !!!
_spatiotemporalLPfilter_Irregular(get_data(inputFrame)+_filterOutput.getNBpixels(), &_irregularLPfilteredFrame[0]);
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]+_filterOutput.getNBpixels());
_spatiotemporalLPfilter_Irregular(get_data(inputFrame)+_filterOutput.getNBpixels()*2, &_irregularLPfilteredFrame[0]);
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_tempBuffer[0]+_filterOutput.getNBpixels()*2);
// applying image projection/resampling
register unsigned int *transformTablePTR=&_transformTable[0];
for (unsigned int i=0 ; i<_usefullpixelIndex ; i+=2, transformTablePTR+=2)
{
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::i:"<<i<<"output(max="<<_outputNBpixels<<")="<<_transformTable[i]<<" / intput(max="<<_filterOutput.getNBpixels()<<")="<<_transformTable[i+1]<<std::endl;
#endif
_sampledFrame[*(transformTablePTR)]=_tempBuffer[*(transformTablePTR+1)];
_sampledFrame[*(transformTablePTR)+_outputNBpixels]=_tempBuffer[*(transformTablePTR+1)+_filterOutput.getNBpixels()];
_sampledFrame[*(transformTablePTR)+_outputDoubleNBpixels]=_tempBuffer[*(transformTablePTR+1)+_inputDoubleNBpixels];
}
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::runProjection: color image projection OK"<<std::endl;
#endif
//normalizeGrayOutput_0_maxOutputValue(_sampledFrame, _outputNBpixels);
}else
{
_spatiotemporalLPfilter_Irregular(get_data(inputFrame), &_irregularLPfilteredFrame[0]);
_spatiotemporalLPfilter_Irregular(&_irregularLPfilteredFrame[0], &_irregularLPfilteredFrame[0]);
// applying image projection/resampling
register unsigned int *transformTablePTR=&_transformTable[0];
for (unsigned int i=0 ; i<_usefullpixelIndex ; i+=2, transformTablePTR+=2)
{
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"i:"<<i<<"output(max="<<_outputNBpixels<<")="<<_transformTable[i]<<" / intput(max="<<_filterOutput.getNBpixels()<<")="<<_transformTable[i+1]<<std::endl;
#endif
_sampledFrame[*(transformTablePTR)]=_irregularLPfilteredFrame[*(transformTablePTR+1)];
}
//normalizeGrayOutput_0_maxOutputValue(_sampledFrame, _outputNBpixels);
#ifdef IMAGELOGPOLPROJECTION_DEBUG
std::cout<<"ImageLogPolProjection::runProjection: gray level image projection OK"<<std::endl;
#endif
}
return _sampledFrame;
}
}