65 lines
1.9 KiB
Python
Executable File
65 lines
1.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import numpy as np
|
|
import cv2
|
|
|
|
# local modules
|
|
from video import create_capture
|
|
from common import clock, draw_str
|
|
|
|
help_message = '''
|
|
USAGE: facedetect.py [--cascade <cascade_fn>] [--nested-cascade <cascade_fn>] [<video_source>]
|
|
'''
|
|
|
|
def detect(img, cascade):
|
|
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE)
|
|
if len(rects) == 0:
|
|
return []
|
|
rects[:,2:] += rects[:,:2]
|
|
return rects
|
|
|
|
def draw_rects(img, rects, color):
|
|
for x1, y1, x2, y2 in rects:
|
|
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
|
|
|
if __name__ == '__main__':
|
|
import sys, getopt
|
|
print help_message
|
|
|
|
args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade='])
|
|
try:
|
|
video_src = video_src[0]
|
|
except:
|
|
video_src = 0
|
|
args = dict(args)
|
|
cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml")
|
|
nested_fn = args.get('--nested-cascade', "../../data/haarcascades/haarcascade_eye.xml")
|
|
|
|
cascade = cv2.CascadeClassifier(cascade_fn)
|
|
nested = cv2.CascadeClassifier(nested_fn)
|
|
|
|
cam = create_capture(video_src, fallback='synth:bg=../data/lena.jpg:noise=0.05')
|
|
|
|
while True:
|
|
ret, img = cam.read()
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
gray = cv2.equalizeHist(gray)
|
|
|
|
t = clock()
|
|
rects = detect(gray, cascade)
|
|
vis = img.copy()
|
|
draw_rects(vis, rects, (0, 255, 0))
|
|
for x1, y1, x2, y2 in rects:
|
|
roi = gray[y1:y2, x1:x2]
|
|
vis_roi = vis[y1:y2, x1:x2]
|
|
subrects = detect(roi.copy(), nested)
|
|
draw_rects(vis_roi, subrects, (255, 0, 0))
|
|
dt = clock() - t
|
|
|
|
draw_str(vis, (20, 20), 'time: %.1f ms' % (dt*1000))
|
|
cv2.imshow('facedetect', vis)
|
|
|
|
if 0xFF & cv2.waitKey(5) == 27:
|
|
break
|
|
cv2.destroyAllWindows()
|