 cdc10defa3
			
		
	
	cdc10defa3
	
	
	
		
			
			Conflicts: modules/cuda/test/test_objdetect.cpp modules/gpu/perf/perf_core.cpp modules/gpu/perf/perf_video.cpp modules/gpu/test/test_core.cpp
		
			
				
	
	
		
			255 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "perf_precomp.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace testing;
 | |
| using namespace perf;
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // GEMM
 | |
| 
 | |
| #ifdef HAVE_CUBLAS
 | |
| 
 | |
| CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T)
 | |
| #define ALL_GEMM_FLAGS Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), \
 | |
|                               GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Type_Flags, cv::Size, MatType, GemmFlags);
 | |
| 
 | |
| PERF_TEST_P(Sz_Type_Flags, GEMM,
 | |
|             Combine(Values(cv::Size(512, 512), cv::Size(1024, 1024)),
 | |
|                     Values(CV_32FC1, CV_32FC2, CV_64FC1),
 | |
|                     ALL_GEMM_FLAGS))
 | |
| {
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int type = GET_PARAM(1);
 | |
|     const int flags = GET_PARAM(2);
 | |
| 
 | |
|     cv::Mat src1(size, type);
 | |
|     declare.in(src1, WARMUP_RNG);
 | |
| 
 | |
|     cv::Mat src2(size, type);
 | |
|     declare.in(src2, WARMUP_RNG);
 | |
| 
 | |
|     cv::Mat src3(size, type);
 | |
|     declare.in(src3, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         declare.time(5.0);
 | |
| 
 | |
|         const cv::cuda::GpuMat d_src1(src1);
 | |
|         const cv::cuda::GpuMat d_src2(src2);
 | |
|         const cv::cuda::GpuMat d_src3(src3);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, dst, flags);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         declare.time(50.0);
 | |
| 
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst, flags);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // MulSpectrums
 | |
| 
 | |
| CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags);
 | |
| 
 | |
| PERF_TEST_P(Sz_Flags, MulSpectrums,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(0, DftFlags(cv::DFT_ROWS))))
 | |
| {
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int flag = GET_PARAM(1);
 | |
| 
 | |
|     cv::Mat a(size, CV_32FC2);
 | |
|     cv::Mat b(size, CV_32FC2);
 | |
|     declare.in(a, b, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_a(a);
 | |
|         const cv::cuda::GpuMat d_b(b);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::mulSpectrums(d_a, d_b, dst, flag);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::mulSpectrums(a, b, dst, flag);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // MulAndScaleSpectrums
 | |
| 
 | |
| PERF_TEST_P(Sz, MulAndScaleSpectrums,
 | |
|             CUDA_TYPICAL_MAT_SIZES)
 | |
| {
 | |
|     const cv::Size size = GetParam();
 | |
| 
 | |
|     const float scale = 1.f / size.area();
 | |
| 
 | |
|     cv::Mat src1(size, CV_32FC2);
 | |
|     cv::Mat src2(size, CV_32FC2);
 | |
|     declare.in(src1,src2, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src1(src1);
 | |
|         const cv::cuda::GpuMat d_src2(src2);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::mulAndScaleSpectrums(d_src1, d_src2, dst, cv::DFT_ROWS, scale, false);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FAIL_NO_CPU();
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // Dft
 | |
| 
 | |
| PERF_TEST_P(Sz_Flags, Dft,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE))))
 | |
| {
 | |
|     declare.time(10.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int flag = GET_PARAM(1);
 | |
| 
 | |
|     cv::Mat src(size, CV_32FC2);
 | |
|     declare.in(src, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         const cv::cuda::GpuMat d_src(src);
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::cuda::dft(d_src, dst, size, flag);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::dft(src, dst, flag);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // Convolve
 | |
| 
 | |
| DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool);
 | |
| 
 | |
| PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve,
 | |
|             Combine(CUDA_TYPICAL_MAT_SIZES,
 | |
|                     Values(17, 27, 32, 64),
 | |
|                     Bool()))
 | |
| {
 | |
|     declare.time(10.0);
 | |
| 
 | |
|     const cv::Size size = GET_PARAM(0);
 | |
|     const int templ_size = GET_PARAM(1);
 | |
|     const bool ccorr = GET_PARAM(2);
 | |
| 
 | |
|     const cv::Mat image(size, CV_32FC1);
 | |
|     const cv::Mat templ(templ_size, templ_size, CV_32FC1);
 | |
|     declare.in(image, templ, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_CUDA())
 | |
|     {
 | |
|         cv::cuda::GpuMat d_image = cv::cuda::createContinuous(size, CV_32FC1);
 | |
|         d_image.upload(image);
 | |
| 
 | |
|         cv::cuda::GpuMat d_templ = cv::cuda::createContinuous(templ_size, templ_size, CV_32FC1);
 | |
|         d_templ.upload(templ);
 | |
| 
 | |
|         cv::Ptr<cv::cuda::Convolution> convolution = cv::cuda::createConvolution();
 | |
| 
 | |
|         cv::cuda::GpuMat dst;
 | |
| 
 | |
|         TEST_CYCLE() convolution->convolve(d_image, d_templ, dst, ccorr);
 | |
| 
 | |
|         CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (ccorr)
 | |
|             FAIL_NO_CPU();
 | |
| 
 | |
|         cv::Mat dst;
 | |
| 
 | |
|         TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ);
 | |
| 
 | |
|         CPU_SANITY_CHECK(dst);
 | |
|     }
 | |
| }
 |