308 lines
9.3 KiB
C
308 lines
9.3 KiB
C
#include "clapack.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static integer c__0 = 0;
|
|
static real c_b8 = 1.f;
|
|
|
|
/* Subroutine */ int slasd8_(integer *icompq, integer *k, real *d__, real *
|
|
z__, real *vf, real *vl, real *difl, real *difr, integer *lddifr,
|
|
real *dsigma, real *work, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer difr_dim1, difr_offset, i__1, i__2;
|
|
real r__1, r__2;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal), r_sign(real *, real *);
|
|
|
|
/* Local variables */
|
|
integer i__, j;
|
|
real dj, rho;
|
|
integer iwk1, iwk2, iwk3;
|
|
real temp;
|
|
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
|
|
integer iwk2i, iwk3i;
|
|
extern doublereal snrm2_(integer *, real *, integer *);
|
|
real diflj, difrj, dsigj;
|
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
|
|
integer *);
|
|
extern doublereal slamc3_(real *, real *);
|
|
extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *,
|
|
real *, real *, real *, real *, integer *), xerbla_(char *,
|
|
integer *);
|
|
real dsigjp;
|
|
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
|
|
real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
|
|
real *, integer *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLASD8 finds the square roots of the roots of the secular equation, */
|
|
/* as defined by the values in DSIGMA and Z. It makes the appropriate */
|
|
/* calls to SLASD4, and stores, for each element in D, the distance */
|
|
/* to its two nearest poles (elements in DSIGMA). It also updates */
|
|
/* the arrays VF and VL, the first and last components of all the */
|
|
/* right singular vectors of the original bidiagonal matrix. */
|
|
|
|
/* SLASD8 is called from SLASD6. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* ICOMPQ (input) INTEGER */
|
|
/* Specifies whether singular vectors are to be computed in */
|
|
/* factored form in the calling routine: */
|
|
/* = 0: Compute singular values only. */
|
|
/* = 1: Compute singular vectors in factored form as well. */
|
|
|
|
/* K (input) INTEGER */
|
|
/* The number of terms in the rational function to be solved */
|
|
/* by SLASD4. K >= 1. */
|
|
|
|
/* D (output) REAL array, dimension ( K ) */
|
|
/* On output, D contains the updated singular values. */
|
|
|
|
/* Z (input) REAL array, dimension ( K ) */
|
|
/* The first K elements of this array contain the components */
|
|
/* of the deflation-adjusted updating row vector. */
|
|
|
|
/* VF (input/output) REAL array, dimension ( K ) */
|
|
/* On entry, VF contains information passed through DBEDE8. */
|
|
/* On exit, VF contains the first K components of the first */
|
|
/* components of all right singular vectors of the bidiagonal */
|
|
/* matrix. */
|
|
|
|
/* VL (input/output) REAL array, dimension ( K ) */
|
|
/* On entry, VL contains information passed through DBEDE8. */
|
|
/* On exit, VL contains the first K components of the last */
|
|
/* components of all right singular vectors of the bidiagonal */
|
|
/* matrix. */
|
|
|
|
/* DIFL (output) REAL array, dimension ( K ) */
|
|
/* On exit, DIFL(I) = D(I) - DSIGMA(I). */
|
|
|
|
/* DIFR (output) REAL array, */
|
|
/* dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
|
|
/* dimension ( K ) if ICOMPQ = 0. */
|
|
/* On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
|
|
/* defined and will not be referenced. */
|
|
|
|
/* If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
|
|
/* normalizing factors for the right singular vector matrix. */
|
|
|
|
/* LDDIFR (input) INTEGER */
|
|
/* The leading dimension of DIFR, must be at least K. */
|
|
|
|
/* DSIGMA (input) REAL array, dimension ( K ) */
|
|
/* The first K elements of this array contain the old roots */
|
|
/* of the deflated updating problem. These are the poles */
|
|
/* of the secular equation. */
|
|
|
|
/* WORK (workspace) REAL array, dimension at least 3 * K */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > 0: if INFO = 1, an singular value did not converge */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */
|
|
/* California at Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
--z__;
|
|
--vf;
|
|
--vl;
|
|
--difl;
|
|
difr_dim1 = *lddifr;
|
|
difr_offset = 1 + difr_dim1;
|
|
difr -= difr_offset;
|
|
--dsigma;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*icompq < 0 || *icompq > 1) {
|
|
*info = -1;
|
|
} else if (*k < 1) {
|
|
*info = -2;
|
|
} else if (*lddifr < *k) {
|
|
*info = -9;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLASD8", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*k == 1) {
|
|
d__[1] = dabs(z__[1]);
|
|
difl[1] = d__[1];
|
|
if (*icompq == 1) {
|
|
difl[2] = 1.f;
|
|
difr[(difr_dim1 << 1) + 1] = 1.f;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
|
|
/* be computed with high relative accuracy (barring over/underflow). */
|
|
/* This is a problem on machines without a guard digit in */
|
|
/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
|
|
/* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
|
|
/* which on any of these machines zeros out the bottommost */
|
|
/* bit of DSIGMA(I) if it is 1; this makes the subsequent */
|
|
/* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
|
|
/* occurs. On binary machines with a guard digit (almost all */
|
|
/* machines) it does not change DSIGMA(I) at all. On hexadecimal */
|
|
/* and decimal machines with a guard digit, it slightly */
|
|
/* changes the bottommost bits of DSIGMA(I). It does not account */
|
|
/* for hexadecimal or decimal machines without guard digits */
|
|
/* (we know of none). We use a subroutine call to compute */
|
|
/* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
|
|
/* this code. */
|
|
|
|
i__1 = *k;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
|
|
/* L10: */
|
|
}
|
|
|
|
/* Book keeping. */
|
|
|
|
iwk1 = 1;
|
|
iwk2 = iwk1 + *k;
|
|
iwk3 = iwk2 + *k;
|
|
iwk2i = iwk2 - 1;
|
|
iwk3i = iwk3 - 1;
|
|
|
|
/* Normalize Z. */
|
|
|
|
rho = snrm2_(k, &z__[1], &c__1);
|
|
slascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info);
|
|
rho *= rho;
|
|
|
|
/* Initialize WORK(IWK3). */
|
|
|
|
slaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k);
|
|
|
|
/* Compute the updated singular values, the arrays DIFL, DIFR, */
|
|
/* and the updated Z. */
|
|
|
|
i__1 = *k;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
slasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
|
|
iwk2], info);
|
|
|
|
/* If the root finder fails, the computation is terminated. */
|
|
|
|
if (*info != 0) {
|
|
return 0;
|
|
}
|
|
work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
|
|
difl[j] = -work[j];
|
|
difr[j + difr_dim1] = -work[j + 1];
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
|
|
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
|
|
j]);
|
|
/* L20: */
|
|
}
|
|
i__2 = *k;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
|
|
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
|
|
j]);
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
|
|
/* Compute updated Z. */
|
|
|
|
i__1 = *k;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
r__2 = sqrt((r__1 = work[iwk3i + i__], dabs(r__1)));
|
|
z__[i__] = r_sign(&r__2, &z__[i__]);
|
|
/* L50: */
|
|
}
|
|
|
|
/* Update VF and VL. */
|
|
|
|
i__1 = *k;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
diflj = difl[j];
|
|
dj = d__[j];
|
|
dsigj = -dsigma[j];
|
|
if (j < *k) {
|
|
difrj = -difr[j + difr_dim1];
|
|
dsigjp = -dsigma[j + 1];
|
|
}
|
|
work[j] = -z__[j] / diflj / (dsigma[j] + dj);
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigj) - diflj) / (
|
|
dsigma[i__] + dj);
|
|
/* L60: */
|
|
}
|
|
i__2 = *k;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigjp) + difrj) /
|
|
(dsigma[i__] + dj);
|
|
/* L70: */
|
|
}
|
|
temp = snrm2_(k, &work[1], &c__1);
|
|
work[iwk2i + j] = sdot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
|
|
work[iwk3i + j] = sdot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
|
|
if (*icompq == 1) {
|
|
difr[j + (difr_dim1 << 1)] = temp;
|
|
}
|
|
/* L80: */
|
|
}
|
|
|
|
scopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
|
|
scopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
|
|
|
|
return 0;
|
|
|
|
/* End of SLASD8 */
|
|
|
|
} /* slasd8_ */
|