181 lines
4.7 KiB
C

#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = -1.;
/* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer *
lda, integer *ipiv, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
integer i__, j, jp;
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *), dscal_(integer *, doublereal *, doublereal *, integer
*);
doublereal sfmin;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
extern doublereal dlamch_(char *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGETF2 computes an LU factorization of a general m-by-n matrix A */
/* using partial pivoting with row interchanges. */
/* The factorization has the form */
/* A = P * L * U */
/* where P is a permutation matrix, L is lower triangular with unit */
/* diagonal elements (lower trapezoidal if m > n), and U is upper */
/* triangular (upper trapezoidal if m < n). */
/* This is the right-looking Level 2 BLAS version of the algorithm. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the m by n matrix to be factored. */
/* On exit, the factors L and U from the factorization */
/* A = P*L*U; the unit diagonal elements of L are not stored. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* IPIV (output) INTEGER array, dimension (min(M,N)) */
/* The pivot indices; for 1 <= i <= min(M,N), row i of the */
/* matrix was interchanged with row IPIV(i). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -k, the k-th argument had an illegal value */
/* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */
/* has been completed, but the factor U is exactly */
/* singular, and division by zero will occur if it is used */
/* to solve a system of equations. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGETF2", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
/* Compute machine safe minimum */
sfmin = dlamch_("S");
i__1 = min(*m,*n);
for (j = 1; j <= i__1; ++j) {
/* Find pivot and test for singularity. */
i__2 = *m - j + 1;
jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
ipiv[j] = jp;
if (a[jp + j * a_dim1] != 0.) {
/* Apply the interchange to columns 1:N. */
if (jp != j) {
dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
}
/* Compute elements J+1:M of J-th column. */
if (j < *m) {
if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
i__2 = *m - j;
d__1 = 1. / a[j + j * a_dim1];
dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
} else {
i__2 = *m - j;
for (i__ = 1; i__ <= i__2; ++i__) {
a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
/* L20: */
}
}
}
} else if (*info == 0) {
*info = j;
}
if (j < min(*m,*n)) {
/* Update trailing submatrix. */
i__2 = *m - j;
i__3 = *n - j;
dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
}
/* L10: */
}
return 0;
/* End of DGETF2 */
} /* dgetf2_ */