111 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| '''
 | |
| Lucas-Kanade tracker
 | |
| ====================
 | |
| 
 | |
| Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
 | |
| for track initialization and back-tracking for match verification
 | |
| between frames.
 | |
| '''
 | |
| 
 | |
| # Python 2/3 compatibility
 | |
| from __future__ import print_function
 | |
| 
 | |
| import numpy as np
 | |
| import cv2
 | |
| 
 | |
| #local modules
 | |
| from tst_scene_render import TestSceneRender
 | |
| from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
 | |
| 
 | |
| lk_params = dict( winSize  = (15, 15),
 | |
|                   maxLevel = 2,
 | |
|                   criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
 | |
| 
 | |
| feature_params = dict( maxCorners = 500,
 | |
|                        qualityLevel = 0.3,
 | |
|                        minDistance = 7,
 | |
|                        blockSize = 7 )
 | |
| 
 | |
| def getRectFromPoints(points):
 | |
| 
 | |
|     distances = []
 | |
|     for point in points:
 | |
|         distances.append(cv2.norm(point, cv2.NORM_L2))
 | |
| 
 | |
|     x0, y0 = points[np.argmin(distances)]
 | |
|     x1, y1 = points[np.argmax(distances)]
 | |
| 
 | |
|     return np.array([x0, y0, x1, y1])
 | |
| 
 | |
| 
 | |
| class lk_track_test(NewOpenCVTests):
 | |
| 
 | |
|     track_len = 10
 | |
|     detect_interval = 5
 | |
|     tracks = []
 | |
|     frame_idx = 0
 | |
|     render = None
 | |
| 
 | |
|     def test_lk_track(self):
 | |
| 
 | |
|         self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'))
 | |
|         self.runTracker()
 | |
| 
 | |
|     def runTracker(self):
 | |
|         foregroundPointsNum = 0
 | |
| 
 | |
|         while True:
 | |
|             frame = self.render.getNextFrame()
 | |
|             frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 | |
| 
 | |
|             if len(self.tracks) > 0:
 | |
|                 img0, img1 = self.prev_gray, frame_gray
 | |
|                 p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
 | |
|                 p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
 | |
|                 p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
 | |
|                 d = abs(p0-p0r).reshape(-1, 2).max(-1)
 | |
|                 good = d < 1
 | |
|                 new_tracks = []
 | |
|                 for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
 | |
|                     if not good_flag:
 | |
|                         continue
 | |
|                     tr.append([(x, y), self.frame_idx])
 | |
|                     if len(tr) > self.track_len:
 | |
|                         del tr[0]
 | |
|                     new_tracks.append(tr)
 | |
|                 self.tracks = new_tracks
 | |
| 
 | |
|             if self.frame_idx % self.detect_interval == 0:
 | |
|                 goodTracksCount = 0
 | |
|                 for tr in self.tracks:
 | |
|                     oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1])
 | |
|                     newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1])
 | |
|                     if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect):
 | |
|                         goodTracksCount += 1
 | |
| 
 | |
|                 if self.frame_idx == self.detect_interval:
 | |
|                     foregroundPointsNum = goodTracksCount
 | |
| 
 | |
|                 fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1)
 | |
|                 fgRate = float(goodTracksCount) / (len(self.tracks) + 1)
 | |
| 
 | |
|                 if self.frame_idx > 0:
 | |
|                     self.assertGreater(fgIndex, 0.9)
 | |
|                     self.assertGreater(fgRate, 0.2)
 | |
| 
 | |
|                 mask = np.zeros_like(frame_gray)
 | |
|                 mask[:] = 255
 | |
|                 for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
 | |
|                     cv2.circle(mask, (x, y), 5, 0, -1)
 | |
|                 p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
 | |
|                 if p is not None:
 | |
|                     for x, y in np.float32(p).reshape(-1, 2):
 | |
|                         self.tracks.append([[(x, y), self.frame_idx]])
 | |
| 
 | |
|             self.frame_idx += 1
 | |
|             self.prev_gray = frame_gray
 | |
| 
 | |
|             if self.frame_idx > 300:
 | |
|                 break | 
