562 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			562 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| //#define DUMP
 | |
| 
 | |
| struct HOG : testing::TestWithParam<cv::cuda::DeviceInfo>
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Ptr<cv::cuda::HOG> hog;
 | |
| 
 | |
| #ifdef DUMP
 | |
|     std::ofstream f;
 | |
| #else
 | |
|     std::ifstream f;
 | |
| #endif
 | |
| 
 | |
|     int wins_per_img_x;
 | |
|     int wins_per_img_y;
 | |
|     int blocks_per_win_x;
 | |
|     int blocks_per_win_y;
 | |
|     int block_hist_size;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         hog = cv::cuda::HOG::create();
 | |
|     }
 | |
| 
 | |
| #ifdef DUMP
 | |
|     void dump(const std::vector<cv::Point>& locations)
 | |
|     {
 | |
|         int nlocations = locations.size();
 | |
|         f.write((char*)&nlocations, sizeof(nlocations));
 | |
| 
 | |
|         for (int i = 0; i < locations.size(); ++i)
 | |
|             f.write((char*)&locations[i], sizeof(locations[i]));
 | |
|     }
 | |
| #else
 | |
|     void compare(const std::vector<cv::Point>& locations)
 | |
|     {
 | |
|         // skip block_hists check
 | |
|         int rows, cols;
 | |
|         f.read((char*)&rows, sizeof(rows));
 | |
|         f.read((char*)&cols, sizeof(cols));
 | |
|         for (int i = 0; i < rows; ++i)
 | |
|         {
 | |
|             for (int j = 0; j < cols; ++j)
 | |
|             {
 | |
|                 float val;
 | |
|                 f.read((char*)&val, sizeof(val));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         int nlocations;
 | |
|         f.read((char*)&nlocations, sizeof(nlocations));
 | |
|         ASSERT_EQ(nlocations, static_cast<int>(locations.size()));
 | |
| 
 | |
|         for (int i = 0; i < nlocations; ++i)
 | |
|         {
 | |
|             cv::Point location;
 | |
|             f.read((char*)&location, sizeof(location));
 | |
|             ASSERT_EQ(location, locations[i]);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     void testDetect(const cv::Mat& img)
 | |
|     {
 | |
|         hog->setGammaCorrection(false);
 | |
|         hog->setSVMDetector(hog->getDefaultPeopleDetector());
 | |
| 
 | |
|         std::vector<cv::Point> locations;
 | |
| 
 | |
|         // Test detect
 | |
|         hog->detect(loadMat(img), locations);
 | |
| 
 | |
| #ifdef DUMP
 | |
|         dump(locations);
 | |
| #else
 | |
|         compare(locations);
 | |
| #endif
 | |
| 
 | |
|         // Test detect on smaller image
 | |
|         cv::Mat img2;
 | |
|         cv::resize(img, img2, cv::Size(img.cols / 2, img.rows / 2));
 | |
|         hog->detect(loadMat(img2), locations);
 | |
| 
 | |
| #ifdef DUMP
 | |
|         dump(locations);
 | |
| #else
 | |
|         compare(locations);
 | |
| #endif
 | |
| 
 | |
|         // Test detect on greater image
 | |
|         cv::resize(img, img2, cv::Size(img.cols * 2, img.rows * 2));
 | |
|         hog->detect(loadMat(img2), locations);
 | |
| 
 | |
| #ifdef DUMP
 | |
|         dump(locations);
 | |
| #else
 | |
|         compare(locations);
 | |
| #endif
 | |
|     }
 | |
| };
 | |
| 
 | |
| // desabled while resize does not fixed
 | |
| CUDA_TEST_P(HOG, DISABLED_Detect)
 | |
| {
 | |
|     cv::Mat img_rgb = readImage("hog/road.png");
 | |
|     ASSERT_FALSE(img_rgb.empty());
 | |
| 
 | |
|     f.open((std::string(cvtest::TS::ptr()->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
 | |
|     ASSERT_TRUE(f.is_open());
 | |
| 
 | |
|     // Test on color image
 | |
|     cv::Mat img;
 | |
|     cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
 | |
|     testDetect(img);
 | |
| 
 | |
|     // Test on gray image
 | |
|     cv::cvtColor(img_rgb, img, cv::COLOR_BGR2GRAY);
 | |
|     testDetect(img);
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(HOG, GetDescriptors)
 | |
| {
 | |
|     // Load image (e.g. train data, composed from windows)
 | |
|     cv::Mat img_rgb = readImage("hog/train_data.png");
 | |
|     ASSERT_FALSE(img_rgb.empty());
 | |
| 
 | |
|     // Convert to C4
 | |
|     cv::Mat img;
 | |
|     cv::cvtColor(img_rgb, img, cv::COLOR_BGR2BGRA);
 | |
| 
 | |
|     cv::cuda::GpuMat d_img(img);
 | |
| 
 | |
|     // Convert train images into feature vectors (train table)
 | |
|     cv::cuda::GpuMat descriptors, descriptors_by_cols;
 | |
| 
 | |
|     hog->setWinStride(Size(64, 128));
 | |
| 
 | |
|     hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_ROW_BY_ROW);
 | |
|     hog->compute(d_img, descriptors);
 | |
| 
 | |
|     hog->setDescriptorFormat(cv::cuda::HOG::DESCR_FORMAT_COL_BY_COL);
 | |
|     hog->compute(d_img, descriptors_by_cols);
 | |
| 
 | |
|     // Check size of the result train table
 | |
|     wins_per_img_x = 3;
 | |
|     wins_per_img_y = 2;
 | |
|     blocks_per_win_x = 7;
 | |
|     blocks_per_win_y = 15;
 | |
|     block_hist_size = 36;
 | |
|     cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
 | |
|                                             wins_per_img_x * wins_per_img_y);
 | |
|     ASSERT_EQ(descr_size_expected, descriptors.size());
 | |
| 
 | |
|     // Check both formats of output descriptors are handled correctly
 | |
|     cv::Mat dr(descriptors);
 | |
|     cv::Mat dc(descriptors_by_cols);
 | |
|     for (int i = 0; i < wins_per_img_x * wins_per_img_y; ++i)
 | |
|     {
 | |
|         const float* l = dr.rowRange(i, i + 1).ptr<float>();
 | |
|         const float* r = dc.rowRange(i, i + 1).ptr<float>();
 | |
|         for (int y = 0; y < blocks_per_win_y; ++y)
 | |
|             for (int x = 0; x < blocks_per_win_x; ++x)
 | |
|                 for (int k = 0; k < block_hist_size; ++k)
 | |
|                     ASSERT_EQ(l[(y * blocks_per_win_x + x) * block_hist_size + k],
 | |
|                               r[(x * blocks_per_win_y + y) * block_hist_size + k]);
 | |
|     }
 | |
| }
 | |
| /*
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES);
 | |
| */
 | |
| //============== caltech hog tests =====================//
 | |
| 
 | |
| struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> >
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Mat img;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
 | |
|         ASSERT_FALSE(img.empty());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(CalTech, HOG)
 | |
| {
 | |
|     cv::cuda::GpuMat d_img(img);
 | |
|     cv::Mat markedImage(img.clone());
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> d_hog = cv::cuda::HOG::create();
 | |
|     d_hog->setSVMDetector(d_hog->getDefaultPeopleDetector());
 | |
|     d_hog->setNumLevels(d_hog->getNumLevels() + 32);
 | |
| 
 | |
|     std::vector<cv::Rect> found_locations;
 | |
|     d_hog->detectMultiScale(d_img, found_locations);
 | |
| 
 | |
| #if defined (LOG_CASCADE_STATISTIC)
 | |
|     for (int i = 0; i < (int)found_locations.size(); i++)
 | |
|     {
 | |
|         cv::Rect r = found_locations[i];
 | |
| 
 | |
|         std::cout << r.x << " " << r.y  << " " << r.width << " " << r.height << std::endl;
 | |
|         cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
 | |
|     }
 | |
| 
 | |
|     cv::imshow("Res", markedImage);
 | |
|     cv::waitKey();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES,
 | |
|     ::testing::Values<std::string>("caltech/image_00000009_0.png", "caltech/image_00000032_0.png",
 | |
|         "caltech/image_00000165_0.png", "caltech/image_00000261_0.png", "caltech/image_00000469_0.png",
 | |
|         "caltech/image_00000527_0.png", "caltech/image_00000574_0.png")));
 | |
| 
 | |
| 
 | |
| //------------------------variable GPU HOG Tests------------------------//
 | |
| struct Hog_var : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> >
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Mat img, c_img;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::Rect roi(0, 0, 16, 32);
 | |
|         img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
 | |
|         ASSERT_FALSE(img.empty());
 | |
|         c_img = img(roi);
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Hog_var, HOG)
 | |
| {
 | |
|     cv::cuda::GpuMat _img(c_img);
 | |
|     cv::cuda::GpuMat d_img;
 | |
| 
 | |
|     int win_stride_width = 8;int win_stride_height = 8;
 | |
|     int win_width = 16;
 | |
|     int block_width = 8;
 | |
|     int block_stride_width = 4;int block_stride_height = 4;
 | |
|     int cell_width = 4;
 | |
|     int nbins = 9;
 | |
| 
 | |
|     Size win_stride(win_stride_width, win_stride_height);
 | |
|     Size win_size(win_width, win_width * 2);
 | |
|     Size block_size(block_width, block_width);
 | |
|     Size block_stride(block_stride_width, block_stride_height);
 | |
|     Size cell_size(cell_width, cell_width);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, nbins);
 | |
| 
 | |
|     gpu_hog->setNumLevels(13);
 | |
|     gpu_hog->setHitThreshold(0);
 | |
|     gpu_hog->setWinStride(win_stride);
 | |
|     gpu_hog->setScaleFactor(1.05);
 | |
|     gpu_hog->setGroupThreshold(8);
 | |
|     gpu_hog->compute(_img, d_img);
 | |
| 
 | |
|     vector<float> gpu_desc_vec;
 | |
|     ASSERT_TRUE(gpu_desc_vec.empty());
 | |
|     cv::Mat R(d_img);
 | |
| 
 | |
|     cv::HOGDescriptor cpu_hog(win_size, block_size, block_stride, cell_size, nbins);
 | |
|     cpu_hog.nlevels = 13;
 | |
|     vector<float> cpu_desc_vec;
 | |
|     ASSERT_TRUE(cpu_desc_vec.empty());
 | |
|     cpu_hog.compute(c_img, cpu_desc_vec, win_stride, Size(0,0));
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(detect, Hog_var, testing::Combine(ALL_DEVICES,
 | |
|     ::testing::Values<std::string>("/hog/road.png")));
 | |
| 
 | |
| struct Hog_var_cell : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> >
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     cv::Mat img, c_img, c_img2, c_img3, c_img4;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         cv::Rect roi(0, 0, 48, 96);
 | |
|         img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
 | |
|         ASSERT_FALSE(img.empty());
 | |
|         c_img = img(roi);
 | |
| 
 | |
|         cv::Rect roi2(0, 0, 54, 108);
 | |
|         c_img2 = img(roi2);
 | |
| 
 | |
|         cv::Rect roi3(0, 0, 64, 128);
 | |
|         c_img3 = img(roi3);
 | |
| 
 | |
|         cv::Rect roi4(0, 0, 32, 64);
 | |
|         c_img4 = img(roi4);
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(Hog_var_cell, HOG)
 | |
| {
 | |
|     cv::cuda::GpuMat _img(c_img);
 | |
|     cv::cuda::GpuMat _img2(c_img2);
 | |
|     cv::cuda::GpuMat _img3(c_img3);
 | |
|     cv::cuda::GpuMat _img4(c_img4);
 | |
|     cv::cuda::GpuMat d_img;
 | |
| 
 | |
|     ASSERT_FALSE(_img.empty());
 | |
|     ASSERT_TRUE(d_img.empty());
 | |
| 
 | |
|     int win_stride_width = 8;int win_stride_height = 8;
 | |
|     int win_width = 48;
 | |
|     int block_width = 16;
 | |
|     int block_stride_width = 8;int block_stride_height = 8;
 | |
|     int cell_width = 8;
 | |
|     int nbins = 9;
 | |
| 
 | |
|     Size win_stride(win_stride_width, win_stride_height);
 | |
|     Size win_size(win_width, win_width * 2);
 | |
|     Size block_size(block_width, block_width);
 | |
|     Size block_stride(block_stride_width, block_stride_height);
 | |
|     Size cell_size(cell_width, cell_width);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, nbins);
 | |
| 
 | |
|     gpu_hog->setNumLevels(13);
 | |
|     gpu_hog->setHitThreshold(0);
 | |
|     gpu_hog->setWinStride(win_stride);
 | |
|     gpu_hog->setScaleFactor(1.05);
 | |
|     gpu_hog->setGroupThreshold(8);
 | |
|     gpu_hog->compute(_img, d_img);
 | |
| //------------------------------------------------------------------------------
 | |
|     cv::cuda::GpuMat d_img2;
 | |
|     ASSERT_TRUE(d_img2.empty());
 | |
| 
 | |
|     int win_stride_width2 = 8;int win_stride_height2 = 8;
 | |
|     int win_width2 = 48;
 | |
|     int block_width2 = 16;
 | |
|     int block_stride_width2 = 8;int block_stride_height2 = 8;
 | |
|     int cell_width2 = 4;
 | |
| 
 | |
|     Size win_stride2(win_stride_width2, win_stride_height2);
 | |
|     Size win_size2(win_width2, win_width2 * 2);
 | |
|     Size block_size2(block_width2, block_width2);
 | |
|     Size block_stride2(block_stride_width2, block_stride_height2);
 | |
|     Size cell_size2(cell_width2, cell_width2);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> gpu_hog2 = cv::cuda::HOG::create(win_size2, block_size2, block_stride2, cell_size2, nbins);
 | |
|     gpu_hog2->setWinStride(win_stride2);
 | |
|     gpu_hog2->compute(_img, d_img2);
 | |
| //------------------------------------------------------------------------------
 | |
|     cv::cuda::GpuMat d_img3;
 | |
|     ASSERT_TRUE(d_img3.empty());
 | |
| 
 | |
|     int win_stride_width3 = 9;int win_stride_height3 = 9;
 | |
|     int win_width3 = 54;
 | |
|     int block_width3 = 18;
 | |
|     int block_stride_width3 = 9;int block_stride_height3 = 9;
 | |
|     int cell_width3 = 6;
 | |
| 
 | |
|     Size win_stride3(win_stride_width3, win_stride_height3);
 | |
|     Size win_size3(win_width3, win_width3 * 2);
 | |
|     Size block_size3(block_width3, block_width3);
 | |
|     Size block_stride3(block_stride_width3, block_stride_height3);
 | |
|     Size cell_size3(cell_width3, cell_width3);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> gpu_hog3 = cv::cuda::HOG::create(win_size3, block_size3, block_stride3, cell_size3, nbins);
 | |
|     gpu_hog3->setWinStride(win_stride3);
 | |
|     gpu_hog3->compute(_img2, d_img3);
 | |
| //------------------------------------------------------------------------------
 | |
|     cv::cuda::GpuMat d_img4;
 | |
|     ASSERT_TRUE(d_img4.empty());
 | |
| 
 | |
|     int win_stride_width4 = 16;int win_stride_height4 = 16;
 | |
|     int win_width4 = 64;
 | |
|     int block_width4 = 32;
 | |
|     int block_stride_width4 = 16;int block_stride_height4 = 16;
 | |
|     int cell_width4 = 8;
 | |
| 
 | |
|     Size win_stride4(win_stride_width4, win_stride_height4);
 | |
|     Size win_size4(win_width4, win_width4 * 2);
 | |
|     Size block_size4(block_width4, block_width4);
 | |
|     Size block_stride4(block_stride_width4, block_stride_height4);
 | |
|     Size cell_size4(cell_width4, cell_width4);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> gpu_hog4 = cv::cuda::HOG::create(win_size4, block_size4, block_stride4, cell_size4, nbins);
 | |
|     gpu_hog4->setWinStride(win_stride4);
 | |
|     gpu_hog4->compute(_img3, d_img4);
 | |
| //------------------------------------------------------------------------------
 | |
|     cv::cuda::GpuMat d_img5;
 | |
|     ASSERT_TRUE(d_img5.empty());
 | |
| 
 | |
|     int win_stride_width5 = 16;int win_stride_height5 = 16;
 | |
|     int win_width5 = 64;
 | |
|     int block_width5 = 32;
 | |
|     int block_stride_width5 = 16;int block_stride_height5 = 16;
 | |
|     int cell_width5 = 16;
 | |
| 
 | |
|     Size win_stride5(win_stride_width5, win_stride_height5);
 | |
|     Size win_size5(win_width5, win_width5 * 2);
 | |
|     Size block_size5(block_width5, block_width5);
 | |
|     Size block_stride5(block_stride_width5, block_stride_height5);
 | |
|     Size cell_size5(cell_width5, cell_width5);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::HOG> gpu_hog5 = cv::cuda::HOG::create(win_size5, block_size5, block_stride5, cell_size5, nbins);
 | |
|     gpu_hog5->setWinStride(win_stride5);
 | |
|     gpu_hog5->compute(_img3, d_img5);
 | |
| //------------------------------------------------------------------------------
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(detect, Hog_var_cell, testing::Combine(ALL_DEVICES,
 | |
|     ::testing::Values<std::string>("/hog/road.png")));
 | |
| //////////////////////////////////////////////////////////////////////////////////////////
 | |
| /// LBP classifier
 | |
| 
 | |
| PARAM_TEST_CASE(LBP_Read_classifier, cv::cuda::DeviceInfo, int)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(LBP_Read_classifier, Accuracy)
 | |
| {
 | |
|     std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
 | |
| 
 | |
|     cv::Ptr<cv::cuda::CascadeClassifier> d_cascade;
 | |
| 
 | |
|     ASSERT_NO_THROW(
 | |
|         d_cascade = cv::cuda::CascadeClassifier::create(classifierXmlPath);
 | |
|     );
 | |
| 
 | |
|     ASSERT_FALSE(d_cascade.empty());
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_Read_classifier,
 | |
|                         testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
 | |
| 
 | |
| 
 | |
| PARAM_TEST_CASE(LBP_classify, cv::cuda::DeviceInfo, int)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(LBP_classify, Accuracy)
 | |
| {
 | |
|     std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
 | |
|     std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
 | |
| 
 | |
|     cv::CascadeClassifier cpuClassifier(classifierXmlPath);
 | |
|     ASSERT_FALSE(cpuClassifier.empty());
 | |
| 
 | |
|     cv::Mat image = cv::imread(imagePath);
 | |
|     image = image.colRange(0, image.cols/2);
 | |
|     cv::Mat grey;
 | |
|     cvtColor(image, grey, cv::COLOR_BGR2GRAY);
 | |
|     ASSERT_FALSE(image.empty());
 | |
| 
 | |
|     std::vector<cv::Rect> rects;
 | |
|     cpuClassifier.detectMultiScale(grey, rects);
 | |
|     cv::Mat markedImage = image.clone();
 | |
| 
 | |
|     std::vector<cv::Rect>::iterator it = rects.begin();
 | |
|     for (; it != rects.end(); ++it)
 | |
|         cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0));
 | |
| 
 | |
|     cv::Ptr<cv::cuda::CascadeClassifier> gpuClassifier =
 | |
|             cv::cuda::CascadeClassifier::create(classifierXmlPath);
 | |
| 
 | |
|     cv::cuda::GpuMat tested(grey);
 | |
|     cv::cuda::GpuMat gpu_rects_buf;
 | |
|     gpuClassifier->detectMultiScale(tested, gpu_rects_buf);
 | |
| 
 | |
|     std::vector<cv::Rect> gpu_rects;
 | |
|     gpuClassifier->convert(gpu_rects_buf, gpu_rects);
 | |
| 
 | |
| #if defined (LOG_CASCADE_STATISTIC)
 | |
|     for (size_t i = 0; i < gpu_rects.size(); i++)
 | |
|     {
 | |
|         cv::Rect r = gpu_rects[i];
 | |
| 
 | |
|         std::cout << r.x << " " << r.y  << " " << r.width << " " << r.height << std::endl;
 | |
|         cv::rectangle(markedImage, r , CV_RGB(255, 0, 0));
 | |
|     }
 | |
| 
 | |
|     cv::imshow("Res", markedImage);
 | |
|     cv::waitKey();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, LBP_classify,
 | |
|                         testing::Combine(ALL_DEVICES, testing::Values<int>(0)));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
