opencv/doc/tutorials/highgui/trackbar/trackbar.rst
Bernat Gabor a2975f337a 1) Converted all images to JPG to reduce size.
2) Added a raw Latex page break directive after each TOC tree. (For the PDF tutorial look).
3) Two finished tutorials: 
   a) one describing how the Mat data structure works and its output capabilities (format function) (demonstration YouTube video included).
   b) one describing image scanning operations plus the LUT function (demonstration YouTube video included). 
   c) a basic filtering approach (plus multi row image scanning demonstration) in the work.
2011-07-19 22:08:54 +00:00

163 lines
4.5 KiB
ReStructuredText

.. _Adding_Trackbars:
Adding a Trackbar to our applications!
***************************************
* In the previous tutorials (about *linear blending* and the *brightness and contrast adjustments*) you might have noted that we needed to give some **input** to our programs, such as :math:`\alpha` and :math:`beta`. We accomplished that by entering this data using the Terminal
* Well, it is time to use some fancy GUI tools. OpenCV provides some GUI utilities (*highgui.h*) for you. An example of this is a **Trackbar**
.. image:: images/Adding_Trackbars_Tutorial_Trackbar.jpg
:alt: Trackbar example
:align: center
* In this tutorial we will just modify our two previous programs so that they get the input information from the trackbar.
Goals
======
In this tutorial you will learn how to:
* Add a Trackbar in an OpenCV window by using :create_trackbar:`createTrackbar <>`
Code
=====
Let's modify the program made in the tutorial :ref:`Adding_Images`. We will let the user enter the :math:`\alpha` value by using the Trackbar.
.. code-block:: cpp
#include <cv.h>
#include <highgui.h>
using namespace cv;
/// Global Variables
const int alpha_slider_max = 100;
int alpha_slider;
double alpha;
double beta;
/// Matrices to store images
Mat src1;
Mat src2;
Mat dst;
/**
* @function on_trackbar
* @brief Callback for trackbar
*/
void on_trackbar( int, void* )
{
alpha = (double) alpha_slider/alpha_slider_max ;
beta = ( 1.0 - alpha );
addWeighted( src1, alpha, src2, beta, 0.0, dst);
imshow( "Linear Blend", dst );
}
int main( int argc, char** argv )
{
/// Read image ( same size, same type )
src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");
if( !src1.data ) { printf("Error loading src1 \n"); return -1; }
if( !src2.data ) { printf("Error loading src2 \n"); return -1; }
/// Initialize values
alpha_slider = 0;
/// Create Windows
namedWindow("Linear Blend", 1);
/// Create Trackbars
char TrackbarName[50];
sprintf( TrackbarName, "Alpha x %d", alpha_slider_max );
createTrackbar( TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar );
/// Show some stuff
on_trackbar( alpha_slider, 0 );
/// Wait until user press some key
waitKey(0);
return 0;
}
Explanation
============
We only analyze the code that is related to Trackbar:
#. First, we load 02 images, which are going to be blended.
.. code-block:: cpp
src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");
#. To create a trackbar, first we have to create the window in which it is going to be located. So:
.. code-block:: cpp
namedWindow("Linear Blend", 1);
#. Now we can create the Trackbar:
.. code-block:: cpp
createTrackbar( TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar );
Note the following:
* Our Trackbar has a label **TrackbarName**
* The Trackbar is located in the window named **"Linear Blend"**
* The Trackbar values will be in the range from :math:`0` to **alpha_slider_max** (the minimum limit is always **zero**).
* The numerical value of Trackbar is stored in **alpha_slider**
* Whenever the user moves the Trackbar, the callback function **on_trackbar** is called
#. Finally, we have to define the callback function **on_trackbar**
.. code-block:: cpp
void on_trackbar( int, void* )
{
alpha = (double) alpha_slider/alpha_slider_max ;
beta = ( 1.0 - alpha );
addWeighted( src1, alpha, src2, beta, 0.0, dst);
imshow( "Linear Blend", dst );
}
Note that:
* We use the value of **alpha_slider** (integer) to get a double value for **alpha**.
* **alpha_slider** is updated each time the trackbar is displaced by the user.
* We define *src1*, *src2*, *dist*, *alpha*, *alpha_slider* and *beta* as global variables, so they can be used everywhere.
Result
=======
* Our program produces the following output:
.. image:: images/Adding_Trackbars_Tutorial_Result_0.jpg
:alt: Adding Trackbars - Windows Linux
:align: center
* As a manner of practice, you can also add 02 trackbars for the program made in :ref:`Basic_Linear_Transform`. One trackbar to set :math:`\alpha` and another for :math:`\beta`. The output might look like:
.. image:: images/Adding_Trackbars_Tutorial_Result_1.jpg
:alt: Adding Trackbars - Lena
:height: 500px
:align: center