opencv/modules/softcascade/doc/softcascade_training.rst
2013-02-01 14:36:06 +04:00

83 lines
2.5 KiB
ReStructuredText

Soft Cascade Training
=======================
.. highlight:: cpp
Soft Cascade Detector Training
--------------------------------------------
SoftCascadeOctave
-----------------
.. ocv:class:: SoftCascadeOctave
Public interface for soft cascade training algorithm
class CV_EXPORTS SoftCascadeOctave : public Algorithm
{
public:
enum {
// Direct backward pruning. (Cha Zhang and Paul Viola)
DBP = 1,
// Multiple instance pruning. (Cha Zhang and Paul Viola)
MIP = 2,
// Originally proposed by L. Bourdev and J. Brandt
HEURISTIC = 4 };
virtual ~SoftCascadeOctave();
static cv::Ptr<SoftCascadeOctave> create(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
virtual void setRejectThresholds(OutputArray thresholds) = 0;
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0;
virtual void write( CvFileStorage* fs, string name) const = 0;
};
SoftCascadeOctave::~SoftCascadeOctave
---------------------------------------
Destructor for SoftCascadeOctave.
.. ocv:function:: SoftCascadeOctave::~SoftCascadeOctave()
SoftCascadeOctave::train
------------------------
.. ocv:function:: bool SoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
:param dataset an object that allows communicate for training set.
:param pool an object that presents feature pool.
:param weaks a number of weak trees should be trained.
:param treeDepth a depth of resulting weak trees.
SoftCascadeOctave::setRejectThresholds
--------------------------------------
.. ocv:function:: void SoftCascadeOctave::setRejectThresholds(OutputArray thresholds)
:param thresholds an output array of resulted rejection vector. Have same size as number of trained stages.
SoftCascadeOctave::write
------------------------
.. ocv:function:: write SoftCascadeOctave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const
.. ocv:function:: write SoftCascadeOctave::train( CvFileStorage* fs, string name) const
:param fs an output file storage to store trained detector.
:param pool an object that presents feature pool.
:param dataset a rejection vector that should be included in detector xml file.
:param name a name of root node for trained detector.