1354 lines
63 KiB
C++
1354 lines
63 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Niko Li, newlife20080214@gmail.com
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
// Shengen Yan, yanshengen@gmail.com
|
|
// Rock Li, Rock.Li@amd.com
|
|
// Zero Lin, Zero.Lin@amd.com
|
|
// Zhang Ying, zhangying913@gmail.com
|
|
// Xu Pang, pangxu010@163.com
|
|
// Wu Zailong, bullet@yeah.net
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <iomanip>
|
|
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
using namespace std;
|
|
|
|
#if !defined (HAVE_OPENCL)
|
|
|
|
|
|
void cv::ocl::meanShiftFiltering(const oclMat &, oclMat &, int, int, TermCriteria)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::meanShiftProc(const oclMat &, oclMat &, oclMat &, int, int, TermCriteria)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
double cv::ocl::threshold(const oclMat &, oclMat &, double, int)
|
|
{
|
|
throw_nogpu();
|
|
return 0.0;
|
|
}
|
|
void cv::ocl::resize(const oclMat &, oclMat &, Size, double, double, int)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::remap(const oclMat&, oclMat&, oclMat&, oclMat&, int, int ,const Scalar&) { throw_nogpu(); }
|
|
|
|
void cv::ocl::copyMakeBorder(const oclMat &, oclMat &, int, int, int, int, const Scalar &)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::warpAffine(const oclMat &, oclMat &, const Mat &, Size, int)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::warpPerspective(const oclMat &, oclMat &, const Mat &, Size, int)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::integral(const oclMat &, oclMat &, oclMat &)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::calcHist(const oclMat &, oclMat &hist)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
void cv::ocl::bilateralFilter(const oclMat &, oclMat &, int, double, double, int)
|
|
{
|
|
throw_nogpu();
|
|
}
|
|
#else /* !defined (HAVE_OPENCL) */
|
|
|
|
namespace cv
|
|
{
|
|
namespace ocl
|
|
{
|
|
|
|
////////////////////////////////////OpenCL kernel strings//////////////////////////
|
|
extern const char *meanShift;
|
|
extern const char *img_proc;
|
|
extern const char *imgproc_copymakeboder;
|
|
extern const char *imgproc_median;
|
|
extern const char *imgproc_threshold;
|
|
extern const char *imgproc_resize;
|
|
extern const char *imgproc_remap;
|
|
extern const char *imgproc_warpAffine;
|
|
extern const char *imgproc_warpPerspective;
|
|
extern const char *imgproc_integral_sum;
|
|
extern const char *imgproc_integral;
|
|
extern const char *imgproc_histogram;
|
|
extern const char *imgproc_bilateral;
|
|
extern const char *imgproc_calcHarris;
|
|
extern const char *imgproc_calcMinEigenVal;
|
|
////////////////////////////////////OpenCL call wrappers////////////////////////////
|
|
|
|
template <typename T> struct index_and_sizeof;
|
|
template <> struct index_and_sizeof<char>
|
|
{
|
|
enum { index = 1 };
|
|
};
|
|
template <> struct index_and_sizeof<unsigned char>
|
|
{
|
|
enum { index = 2 };
|
|
};
|
|
template <> struct index_and_sizeof<short>
|
|
{
|
|
enum { index = 3 };
|
|
};
|
|
template <> struct index_and_sizeof<unsigned short>
|
|
{
|
|
enum { index = 4 };
|
|
};
|
|
template <> struct index_and_sizeof<int>
|
|
{
|
|
enum { index = 5 };
|
|
};
|
|
template <> struct index_and_sizeof<float>
|
|
{
|
|
enum { index = 6 };
|
|
};
|
|
template <> struct index_and_sizeof<double>
|
|
{
|
|
enum { index = 7 };
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
// threshold
|
|
|
|
typedef void (*gpuThresh_t)(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type);
|
|
|
|
void threshold_8u(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
|
|
{
|
|
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
uchar thresh_uchar = cvFloor(thresh);
|
|
uchar max_val = cvRound(maxVal);
|
|
string kernelName = "threshold";
|
|
|
|
size_t cols = (dst.cols + (dst.offset % 16) + 15) / 16;
|
|
size_t bSizeX = 16, bSizeY = 16;
|
|
size_t gSizeX = cols % bSizeX == 0 ? cols : (cols + bSizeX - 1) / bSizeX * bSizeX;
|
|
size_t gSizeY = dst.rows;
|
|
size_t globalThreads[3] = {gSizeX, gSizeY, 1};
|
|
size_t localThreads[3] = {bSizeX, bSizeY, 1};
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
args.push_back( make_pair(sizeof(cl_mem), &src.data));
|
|
args.push_back( make_pair(sizeof(cl_mem), &dst.data));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( make_pair(sizeof(cl_uchar), (void *)&thresh_uchar));
|
|
args.push_back( make_pair(sizeof(cl_uchar), (void *)&max_val));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&type));
|
|
openCLExecuteKernel(clCxt, &imgproc_threshold, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
}
|
|
|
|
void threshold_32f(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
|
|
{
|
|
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
float thresh_f = thresh;
|
|
float max_val = maxVal;
|
|
int dst_offset = (dst.offset >> 2);
|
|
int dst_step = (dst.step >> 2);
|
|
int src_offset = (src.offset >> 2);
|
|
int src_step = (src.step >> 2);
|
|
|
|
string kernelName = "threshold";
|
|
|
|
size_t cols = (dst.cols + (dst_offset & 3) + 3) / 4;
|
|
//size_t cols = dst.cols;
|
|
size_t bSizeX = 16, bSizeY = 16;
|
|
size_t gSizeX = cols % bSizeX == 0 ? cols : (cols + bSizeX - 1) / bSizeX * bSizeX;
|
|
size_t gSizeY = dst.rows;
|
|
size_t globalThreads[3] = {gSizeX, gSizeY, 1};
|
|
size_t localThreads[3] = {bSizeX, bSizeY, 1};
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
args.push_back( make_pair(sizeof(cl_mem), &src.data));
|
|
args.push_back( make_pair(sizeof(cl_mem), &dst.data));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src_offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src_step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_step));
|
|
args.push_back( make_pair(sizeof(cl_float), (void *)&thresh_f));
|
|
args.push_back( make_pair(sizeof(cl_float), (void *)&max_val));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&type));
|
|
openCLExecuteKernel(clCxt, &imgproc_threshold, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
|
|
}
|
|
|
|
//threshold: support 8UC1 and 32FC1 data type and five threshold type
|
|
double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
|
|
{
|
|
//TODO: These limitations shall be removed later.
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1);
|
|
CV_Assert(type == THRESH_BINARY || type == THRESH_BINARY_INV || type == THRESH_TRUNC
|
|
|| type == THRESH_TOZERO || type == THRESH_TOZERO_INV );
|
|
|
|
static const gpuThresh_t gpuThresh_callers[2] = {threshold_8u, threshold_32f};
|
|
|
|
dst.create( src.size(), src.type() );
|
|
gpuThresh_callers[(src.type() == CV_32FC1)](src, dst, thresh, maxVal, type);
|
|
|
|
return thresh;
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
/////////////////////////////// remap //////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void remap( const oclMat& src, oclMat& dst, oclMat& map1, oclMat& map2, int interpolation, int borderType, const Scalar& borderValue )
|
|
{
|
|
Context *clCxt = src.clCxt;
|
|
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST
|
|
|| interpolation == INTER_CUBIC || interpolation== INTER_LANCZOS4);
|
|
CV_Assert((map1.type() == CV_16SC2)&&(!map2.data) || (map1.type()== CV_32FC2)&&!map2.data);//more
|
|
CV_Assert((!map2.data || map2.size()== map1.size()));
|
|
|
|
dst.create(map1.size(), src.type());
|
|
int depth = src.depth(), map_depth = map1.depth();
|
|
|
|
string kernelName;
|
|
|
|
if( map1.type() == CV_32FC2 && !map2.data )
|
|
{
|
|
if(interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapLNFConstant";
|
|
else if(interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapNNFConstant";
|
|
}
|
|
else if(map1.type() == CV_16SC2 && !map2.data)
|
|
{
|
|
if(interpolation == INTER_LINEAR && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapLNSConstant";
|
|
else if(interpolation == INTER_NEAREST && borderType == BORDER_CONSTANT)
|
|
kernelName = "remapNNSConstant";
|
|
|
|
}
|
|
int type = src.type();
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
|
|
if(src.type() == CV_8UC1 || src.type() == CV_8UC2 || src.type() == CV_8UC4)
|
|
{
|
|
size_t cols = (dst.cols + dst.offset%4 + 3)/4;
|
|
glbSizeX = cols %blkSizeX==0 ? cols : (cols/blkSizeX+1)*blkSizeX;
|
|
}
|
|
else
|
|
{
|
|
glbSizeX = dst.cols%blkSizeX==0 ? dst.cols : (dst.cols/blkSizeX+1)*blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows%blkSizeY==0 ? dst.rows : (dst.rows/blkSizeY+1)*blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX,glbSizeY,1};
|
|
size_t localThreads[3] = {blkSizeX,blkSizeY,1};
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
if(map1.channels() == 2)
|
|
{
|
|
args.push_back( make_pair(sizeof(cl_mem),(void*)&dst.data));
|
|
args.push_back( make_pair(sizeof(cl_mem),(void*)&src.data));
|
|
args.push_back( make_pair(sizeof(cl_mem),(void*)&map1.data));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&dst.offset));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&src.offset));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&map1.offset));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&dst.step));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&src.step));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&map1.step));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&src.cols));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&src.rows));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&dst.cols));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&dst.rows));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&map1.cols));
|
|
args.push_back( make_pair(sizeof(cl_int),(void*)&map1.rows));
|
|
args.push_back( make_pair(sizeof(cl_double4),(void*)&borderValue));
|
|
}
|
|
openCLExecuteKernel(clCxt,&imgproc_remap,kernelName,globalThreads,localThreads,args,src.channels(),src.depth());
|
|
|
|
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////
|
|
// resize
|
|
|
|
void resize_gpu( const oclMat &src, oclMat &dst, double fx, double fy, int interpolation)
|
|
{
|
|
CV_Assert( (src.channels() == dst.channels()) );
|
|
Context *clCxt = src.clCxt;
|
|
float ifx = 1. / fx;
|
|
float ify = 1. / fy;
|
|
double ifx_d = 1. / fx;
|
|
double ify_d = 1. / fy;
|
|
|
|
string kernelName;
|
|
if(interpolation == INTER_LINEAR)
|
|
kernelName = "resizeLN";
|
|
else if(interpolation == INTER_NEAREST)
|
|
kernelName = "resizeNN";
|
|
|
|
//TODO: improve this kernel
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
if(src.type() == CV_8UC1)
|
|
{
|
|
size_t cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
{
|
|
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
if(interpolation == INTER_NEAREST)
|
|
{
|
|
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( make_pair(sizeof(cl_double), (void *)&ifx_d));
|
|
args.push_back( make_pair(sizeof(cl_double), (void *)&ify_d));
|
|
}
|
|
else
|
|
{
|
|
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( make_pair(sizeof(cl_float), (void *)&ifx));
|
|
args.push_back( make_pair(sizeof(cl_float), (void *)&ify));
|
|
}
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_resize, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
}
|
|
|
|
|
|
void resize(const oclMat &src, oclMat &dst, Size dsize,
|
|
double fx, double fy, int interpolation)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4
|
|
|| src.type() == CV_32FC1 || src.type() == CV_32FC4);
|
|
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST);
|
|
CV_Assert( src.size().area() > 0 );
|
|
CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );
|
|
|
|
if(!(dsize == Size()) && (fx > 0 && fy > 0))
|
|
{
|
|
if(dsize.width != (int)(src.cols * fx) || dsize.height != (int)(src.rows * fy))
|
|
{
|
|
std::cout << "invalid dsize and fx, fy!" << std::endl;
|
|
}
|
|
}
|
|
if( dsize == Size() )
|
|
{
|
|
dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
|
|
}
|
|
else
|
|
{
|
|
fx = (double)dsize.width / src.cols;
|
|
fy = (double)dsize.height / src.rows;
|
|
}
|
|
|
|
dst.create(dsize, src.type());
|
|
|
|
if( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR )
|
|
{
|
|
resize_gpu( src, dst, fx, fy, interpolation);
|
|
return;
|
|
}
|
|
CV_Error(CV_StsUnsupportedFormat, "Non-supported interpolation method");
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// medianFilter
|
|
void medianFilter(const oclMat &src, oclMat &dst, int m)
|
|
{
|
|
CV_Assert( m % 2 == 1 && m > 1 );
|
|
CV_Assert( m <= 5 || src.depth() == CV_8U );
|
|
CV_Assert( src.cols <= dst.cols && src.rows <= dst.rows );
|
|
|
|
if(src.data == dst.data)
|
|
{
|
|
oclMat src1;
|
|
src.copyTo(src1);
|
|
return medianFilter(src1, dst, m);
|
|
}
|
|
|
|
int srcStep = src.step1() / src.channels();
|
|
int dstStep = dst.step1() / dst.channels();
|
|
int srcOffset = src.offset / src.channels() / src.elemSize1();
|
|
int dstOffset = dst.offset / dst.channels() / dst.elemSize1();
|
|
|
|
Context *clCxt = src.clCxt;
|
|
string kernelName = "medianFilter";
|
|
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&srcOffset));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dstOffset));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
|
|
|
|
size_t globalThreads[3] = {(src.cols + 18) / 16 * 16, (src.rows + 15) / 16 * 16, 1};
|
|
size_t localThreads[3] = {16, 16, 1};
|
|
|
|
if(m == 3)
|
|
{
|
|
string kernelName = "medianFilter3";
|
|
openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
}
|
|
else if(m == 5)
|
|
{
|
|
string kernelName = "medianFilter5";
|
|
openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
}
|
|
else
|
|
{
|
|
CV_Error(CV_StsUnsupportedFormat, "Non-supported filter length");
|
|
//string kernelName = "medianFilter";
|
|
//args.push_back( make_pair( sizeof(cl_int),(void*)&m));
|
|
|
|
//openCLExecuteKernel(clCxt,&imgproc_median,kernelName,globalThreads,localThreads,args,src.channels(),-1);
|
|
}
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// copyMakeBorder
|
|
void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int left, int boardtype, void *nVal)
|
|
{
|
|
CV_Assert( (src.channels() == dst.channels()) );
|
|
|
|
int srcStep = src.step1() / src.channels();
|
|
int dstStep = dst.step1() / dst.channels();
|
|
int srcOffset = src.offset / src.channels() / src.elemSize1();
|
|
int dstOffset = dst.offset / dst.channels() / dst.elemSize1();
|
|
|
|
int D = src.depth();
|
|
int V32 = *(int *)nVal;
|
|
char V8 = *(char *)nVal;
|
|
if(src.channels() == 4)
|
|
{
|
|
unsigned int v = 0x01020408;
|
|
char *pv = (char *)(&v);
|
|
uchar *pnVal = (uchar *)(nVal);
|
|
if(((*pv) & 0x01) != 0)
|
|
V32 = (pnVal[0] << 24) + (pnVal[1] << 16) + (pnVal[2] << 8) + (pnVal[3]);
|
|
else
|
|
V32 = (pnVal[3] << 24) + (pnVal[2] << 16) + (pnVal[1] << 8) + (pnVal[0]);
|
|
|
|
srcStep = src.step / 4;
|
|
dstStep = dst.step / 4;
|
|
|
|
D = 4;
|
|
}
|
|
|
|
Context *clCxt = src.clCxt;
|
|
string kernelName = "copyConstBorder";
|
|
if(boardtype == BORDER_REPLICATE)
|
|
kernelName = "copyReplicateBorder";
|
|
else if(boardtype == BORDER_REFLECT_101)
|
|
kernelName = "copyReflectBorder";
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&srcOffset));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dstOffset));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&top));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&left));
|
|
if(D == 0)
|
|
args.push_back( make_pair( sizeof(uchar), (void *)&V8));
|
|
else
|
|
args.push_back( make_pair( sizeof(int), (void *)&V32));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
|
|
|
|
size_t globalThreads[3] = {((dst.cols + 6) / 4 * dst.rows + 255) / 256 * 256, 1, 1};
|
|
size_t localThreads[3] = {256, 1, 1};
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_copymakeboder, kernelName, globalThreads, localThreads, args, 1, D);
|
|
}
|
|
|
|
void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int boardtype, const Scalar &value)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1);
|
|
CV_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0);
|
|
|
|
dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
|
|
|
|
switch (src.type())
|
|
{
|
|
case CV_8UC1:
|
|
{
|
|
uchar nVal = cvRound(value[0]);
|
|
copyMakeBorder( src, dst, top, left, boardtype, &nVal);
|
|
break;
|
|
}
|
|
case CV_8UC4:
|
|
{
|
|
uchar nVal[] = {(uchar)value[0], (uchar)value[1], (uchar)value[2], (uchar)value[3]};
|
|
copyMakeBorder( src, dst, top, left, boardtype, nVal);
|
|
break;
|
|
}
|
|
case CV_32SC1:
|
|
{
|
|
int nVal = cvRound(value[0]);
|
|
copyMakeBorder( src, dst, top, left, boardtype, &nVal);
|
|
break;
|
|
}
|
|
default:
|
|
CV_Error(-217, "Unsupported source type");
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// warp
|
|
|
|
namespace
|
|
{
|
|
#define F double
|
|
|
|
void convert_coeffs(F *M)
|
|
{
|
|
double D = M[0] * M[4] - M[1] * M[3];
|
|
D = D != 0 ? 1. / D : 0;
|
|
double A11 = M[4] * D, A22 = M[0] * D;
|
|
M[0] = A11;
|
|
M[1] *= -D;
|
|
M[3] *= -D;
|
|
M[4] = A22;
|
|
double b1 = -M[0] * M[2] - M[1] * M[5];
|
|
double b2 = -M[3] * M[2] - M[4] * M[5];
|
|
M[2] = b1;
|
|
M[5] = b2;
|
|
}
|
|
|
|
double invert(double *M)
|
|
{
|
|
#define Sd(y,x) (Sd[y*3+x])
|
|
#define Dd(y,x) (Dd[y*3+x])
|
|
#define det3(m) (m(0,0)*(m(1,1)*m(2,2) - m(1,2)*m(2,1)) - \
|
|
m(0,1)*(m(1,0)*m(2,2) - m(1,2)*m(2,0)) + \
|
|
m(0,2)*(m(1,0)*m(2,1) - m(1,1)*m(2,0)))
|
|
double *Sd = M;
|
|
double *Dd = M;
|
|
double d = det3(Sd);
|
|
double result = 0;
|
|
if( d != 0)
|
|
{
|
|
double t[9];
|
|
result = d;
|
|
d = 1. / d;
|
|
|
|
t[0] = (Sd(1, 1) * Sd(2, 2) - Sd(1, 2) * Sd(2, 1)) * d;
|
|
t[1] = (Sd(0, 2) * Sd(2, 1) - Sd(0, 1) * Sd(2, 2)) * d;
|
|
t[2] = (Sd(0, 1) * Sd(1, 2) - Sd(0, 2) * Sd(1, 1)) * d;
|
|
|
|
t[3] = (Sd(1, 2) * Sd(2, 0) - Sd(1, 0) * Sd(2, 2)) * d;
|
|
t[4] = (Sd(0, 0) * Sd(2, 2) - Sd(0, 2) * Sd(2, 0)) * d;
|
|
t[5] = (Sd(0, 2) * Sd(1, 0) - Sd(0, 0) * Sd(1, 2)) * d;
|
|
|
|
t[6] = (Sd(1, 0) * Sd(2, 1) - Sd(1, 1) * Sd(2, 0)) * d;
|
|
t[7] = (Sd(0, 1) * Sd(2, 0) - Sd(0, 0) * Sd(2, 1)) * d;
|
|
t[8] = (Sd(0, 0) * Sd(1, 1) - Sd(0, 1) * Sd(1, 0)) * d;
|
|
|
|
Dd(0, 0) = t[0];
|
|
Dd(0, 1) = t[1];
|
|
Dd(0, 2) = t[2];
|
|
Dd(1, 0) = t[3];
|
|
Dd(1, 1) = t[4];
|
|
Dd(1, 2) = t[5];
|
|
Dd(2, 0) = t[6];
|
|
Dd(2, 1) = t[7];
|
|
Dd(2, 2) = t[8];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void warpAffine_gpu(const oclMat &src, oclMat &dst, F coeffs[2][3], int interpolation)
|
|
{
|
|
CV_Assert( (src.channels() == dst.channels()) );
|
|
int srcStep = src.step1();
|
|
int dstStep = dst.step1();
|
|
|
|
Context *clCxt = src.clCxt;
|
|
string s[3] = {"NN", "Linear", "Cubic"};
|
|
string kernelName = "warpAffine" + s[interpolation];
|
|
|
|
cl_int st;
|
|
cl_mem coeffs_cm = clCreateBuffer( clCxt->impl->clContext, CL_MEM_READ_WRITE, sizeof(F) * 2 * 3, NULL, &st );
|
|
openCLVerifyCall(st);
|
|
openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, (cl_mem)coeffs_cm, 1, 0, sizeof(F) * 2 * 3, coeffs, 0, 0, 0));
|
|
|
|
//TODO: improve this kernel
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
//if(src.type() == CV_8UC1 && interpolation != 2)
|
|
if(src.type() == CV_8UC1 && interpolation != 2)
|
|
{
|
|
size_t cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
{
|
|
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back(make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dstStep));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back(make_pair(sizeof(cl_mem), (void *)&coeffs_cm));
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_warpAffine, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
openCLSafeCall(clReleaseMemObject(coeffs_cm));
|
|
}
|
|
|
|
|
|
void warpPerspective_gpu(const oclMat &src, oclMat &dst, double coeffs[3][3], int interpolation)
|
|
{
|
|
CV_Assert( (src.channels() == dst.channels()) );
|
|
int srcStep = src.step1();
|
|
int dstStep = dst.step1();
|
|
|
|
Context *clCxt = src.clCxt;
|
|
string s[3] = {"NN", "Linear", "Cubic"};
|
|
string kernelName = "warpPerspective" + s[interpolation];
|
|
|
|
cl_int st;
|
|
cl_mem coeffs_cm = clCreateBuffer( clCxt->impl->clContext, CL_MEM_READ_WRITE, sizeof(double) * 3 * 3, NULL, &st );
|
|
openCLVerifyCall(st);
|
|
openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, (cl_mem)coeffs_cm, 1, 0, sizeof(double) * 3 * 3, coeffs, 0, 0, 0));
|
|
|
|
//TODO: improve this kernel
|
|
size_t blkSizeX = 16, blkSizeY = 16;
|
|
size_t glbSizeX;
|
|
if(src.type() == CV_8UC1 && interpolation == 0)
|
|
{
|
|
size_t cols = (dst.cols + dst.offset % 4 + 3) / 4;
|
|
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
else
|
|
/*
|
|
*/
|
|
{
|
|
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
|
|
}
|
|
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
|
|
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
|
|
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
|
|
|
|
vector< pair<size_t, const void *> > args;
|
|
|
|
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data));
|
|
args.push_back(make_pair(sizeof(cl_mem), (void *)&dst.data));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&src.cols));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&src.rows));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&srcStep));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dstStep));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&src.offset));
|
|
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back(make_pair(sizeof(cl_mem), (void *)&coeffs_cm));
|
|
|
|
openCLExecuteKernel(clCxt, &imgproc_warpPerspective, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
|
|
openCLSafeCall(clReleaseMemObject(coeffs_cm));
|
|
}
|
|
}
|
|
|
|
void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags)
|
|
{
|
|
int interpolation = flags & INTER_MAX;
|
|
|
|
CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.channels() != 2 && src.channels() != 3);
|
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
|
|
|
|
dst.create(dsize, src.type());
|
|
|
|
CV_Assert(M.rows == 2 && M.cols == 3);
|
|
|
|
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
|
|
F coeffs[2][3];
|
|
Mat coeffsMat(2, 3, CV_64F, (void *)coeffs);
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
if(!warpInd)
|
|
{
|
|
convert_coeffs((F *)(&coeffs[0][0]));
|
|
}
|
|
warpAffine_gpu(src, dst, coeffs, interpolation);
|
|
}
|
|
|
|
void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags)
|
|
{
|
|
int interpolation = flags & INTER_MAX;
|
|
|
|
CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.channels() != 2 && src.channels() != 3);
|
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
|
|
|
|
dst.create(dsize, src.type());
|
|
|
|
|
|
CV_Assert(M.rows == 3 && M.cols == 3);
|
|
|
|
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
|
|
double coeffs[3][3];
|
|
Mat coeffsMat(3, 3, CV_64F, (void *)coeffs);
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
if(!warpInd)
|
|
{
|
|
invert((double *)(&coeffs[0][0]));
|
|
}
|
|
|
|
warpPerspective_gpu(src, dst, coeffs, interpolation);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// integral
|
|
|
|
void integral(const oclMat &src, oclMat &sum, oclMat &sqsum)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1);
|
|
if(src.clCxt->impl->double_support == 0 && src.depth() ==CV_64F)
|
|
{
|
|
CV_Error(-217,"select device don't support double");
|
|
}
|
|
int vlen = 4;
|
|
int offset = src.offset / vlen;
|
|
int pre_invalid = src.offset % vlen;
|
|
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
|
|
|
|
oclMat t_sum , t_sqsum;
|
|
t_sum.create(src.cols, src.rows, CV_32SC1);
|
|
t_sqsum.create(src.cols, src.rows, CV_32FC1);
|
|
|
|
int w = src.cols + 1, h = src.rows + 1;
|
|
sum.create(h, w, CV_32SC1);
|
|
sqsum.create(h, w, CV_32FC1);
|
|
int sum_offset = sum.offset / vlen, sqsum_offset = sqsum.offset / vlen;
|
|
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&pre_invalid ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
|
|
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, -1);
|
|
args.clear();
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&sum.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&sqsum.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum.step));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum_offset));
|
|
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, -1);
|
|
//cout << "tested" << endl;
|
|
}
|
|
void integral(const oclMat &src, oclMat &sum)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1);
|
|
int vlen = 4;
|
|
int offset = src.offset / vlen;
|
|
int pre_invalid = src.offset % vlen;
|
|
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
|
|
|
|
oclMat t_sum;
|
|
t_sum.create(src.cols, src.rows, CV_32SC1);
|
|
|
|
int w = src.cols + 1, h = src.rows + 1;
|
|
sum.create(h, w, CV_32SC1);
|
|
int sum_offset = sum.offset / vlen;
|
|
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&pre_invalid ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
|
|
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_cols", gt, lt, args, -1, -1);
|
|
args.clear();
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&sum.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
|
|
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
|
|
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_rows", gt2, lt2, args, -1, -1);
|
|
//cout << "tested" << endl;
|
|
}
|
|
|
|
/////////////////////// corner //////////////////////////////
|
|
void extractCovData(const oclMat &src, oclMat &Dx, oclMat &Dy,
|
|
int blockSize, int ksize, int borderType)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1);
|
|
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
|
|
oclMat temp;
|
|
if (ksize < 0)
|
|
scale *= 2.;
|
|
|
|
if (src.depth() == CV_8U){
|
|
src.convertTo(temp, (int)CV_32FC1);
|
|
scale *= 255.;
|
|
scale = 1. / scale;
|
|
if (ksize > 0)
|
|
{
|
|
Sobel(temp, Dx, CV_32F, 1, 0, ksize, scale, 0, borderType);
|
|
Sobel(temp, Dy, CV_32F, 0, 1, ksize, scale, 0, borderType);
|
|
}
|
|
else
|
|
{
|
|
Scharr(temp, Dx, CV_32F, 1, 0, scale, 0, borderType);
|
|
Scharr(temp, Dy, CV_32F, 0, 1, scale, 0, borderType);
|
|
}
|
|
}else{
|
|
scale = 1. / scale;
|
|
if (ksize > 0)
|
|
{
|
|
Sobel(src, Dx, CV_32F, 1, 0, ksize, scale, 0, borderType);
|
|
Sobel(src, Dy, CV_32F, 0, 1, ksize, scale, 0, borderType);
|
|
}
|
|
else
|
|
{
|
|
Scharr(src, Dx, CV_32F, 1, 0, scale, 0, borderType);
|
|
Scharr(src, Dy, CV_32F, 0, 1, scale, 0, borderType);
|
|
}
|
|
}
|
|
}
|
|
|
|
void corner_ocl(const char *src_str, string kernelName, int block_size, float k, oclMat &Dx, oclMat &Dy,
|
|
oclMat &dst, int border_type)
|
|
{
|
|
char borderType[30];
|
|
switch (border_type)
|
|
{
|
|
case cv::BORDER_CONSTANT:
|
|
sprintf(borderType, "BORDER_CONSTANT");
|
|
break;
|
|
case cv::BORDER_REFLECT101:
|
|
sprintf(borderType, "BORDER_REFLECT101");
|
|
break;
|
|
case cv::BORDER_REFLECT:
|
|
sprintf(borderType, "BORDER_REFLECT");
|
|
break;
|
|
case cv::BORDER_REPLICATE:
|
|
sprintf(borderType, "BORDER_REPLICATE");
|
|
break;
|
|
default:
|
|
cout << "BORDER type is not supported!" << endl;
|
|
}
|
|
char build_options[150];
|
|
sprintf(build_options, "-D anX=%d -D anY=%d -D ksX=%d -D ksY=%d -D %s",
|
|
block_size / 2, block_size / 2, block_size, block_size, borderType);
|
|
|
|
size_t blockSizeX = 256, blockSizeY = 1;
|
|
size_t gSize = blockSizeX - block_size / 2 * 2;
|
|
size_t globalSizeX = (Dx.cols) % gSize == 0 ? Dx.cols / gSize * blockSizeX : (Dx.cols / gSize + 1) * blockSizeX;
|
|
size_t rows_per_thread = 2;
|
|
size_t globalSizeY = ((Dx.rows + rows_per_thread - 1) / rows_per_thread) % blockSizeY == 0 ?
|
|
((Dx.rows + rows_per_thread - 1) / rows_per_thread) :
|
|
(((Dx.rows + rows_per_thread - 1) / rows_per_thread) / blockSizeY + 1) * blockSizeY;
|
|
|
|
size_t gt[3] = { globalSizeX, globalSizeY, 1 };
|
|
size_t lt[3] = { blockSizeX, blockSizeY, 1 };
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&Dx.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&Dy.data));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dx.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dx.wholerows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dx.wholecols ));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&Dx.step));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dy.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dy.wholerows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dy.wholecols ));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&Dy.step));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
|
|
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
|
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&k));
|
|
openCLExecuteKernel(dst.clCxt, &src_str, kernelName, gt, lt, args, -1, -1, build_options);
|
|
}
|
|
|
|
void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize,
|
|
double k, int borderType)
|
|
{
|
|
if(src.clCxt->impl->double_support == 0 && src.depth() ==CV_64F)
|
|
{
|
|
CV_Error(-217,"select device don't support double");
|
|
}
|
|
oclMat Dx, Dy;
|
|
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
|
|
extractCovData(src, Dx, Dy, blockSize, ksize, borderType);
|
|
dst.create(src.size(), CV_32F);
|
|
corner_ocl(imgproc_calcHarris, "calcHarris", blockSize, static_cast<float>(k), Dx, Dy, dst, borderType);
|
|
}
|
|
|
|
void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int borderType)
|
|
{
|
|
if(src.clCxt->impl->double_support == 0 && src.depth() ==CV_64F)
|
|
{
|
|
CV_Error(-217,"select device don't support double");
|
|
}
|
|
oclMat Dx, Dy;
|
|
CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
|
|
extractCovData(src, Dx, Dy, blockSize, ksize, borderType);
|
|
dst.create(src.size(), CV_32F);
|
|
corner_ocl(imgproc_calcMinEigenVal, "calcMinEigenVal", blockSize, 0, Dx, Dy, dst, borderType);
|
|
}
|
|
/////////////////////////////////// MeanShiftfiltering ///////////////////////////////////////////////
|
|
void meanShiftFiltering_gpu(const oclMat &src, oclMat dst, int sp, int sr, int maxIter, float eps)
|
|
{
|
|
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
|
|
CV_Assert( !(dst.step & 0x3) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
//Arrange the NDRange
|
|
int col = src.cols, row = src.rows;
|
|
int ltx = 16, lty = 8;
|
|
if(src.cols % ltx != 0)
|
|
col = (col / ltx + 1) * ltx;
|
|
if(src.rows % lty != 0)
|
|
row = (row / lty + 1) * lty;
|
|
|
|
size_t globalThreads[3] = {col, row, 1};
|
|
size_t localThreads[3] = {ltx, lty, 1};
|
|
|
|
//set args
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sp ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sr ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&maxIter ));
|
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&eps ));
|
|
openCLExecuteKernel(clCxt, &meanShift, "meanshift_kernel", globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
|
|
void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr, TermCriteria criteria)
|
|
{
|
|
if( src.empty() )
|
|
CV_Error( CV_StsBadArg, "The input image is empty" );
|
|
|
|
if( src.depth() != CV_8U || src.channels() != 4 )
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
|
|
|
dst.create( src.size(), CV_8UC4 );
|
|
|
|
if( !(criteria.type & TermCriteria::MAX_ITER) )
|
|
criteria.maxCount = 5;
|
|
|
|
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
|
|
|
|
float eps;
|
|
if( !(criteria.type & TermCriteria::EPS) )
|
|
eps = 1.f;
|
|
eps = (float)std::max(criteria.epsilon, 0.0);
|
|
|
|
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps);
|
|
|
|
}
|
|
|
|
void meanShiftProc_gpu(const oclMat &src, oclMat dstr, oclMat dstsp, int sp, int sr, int maxIter, float eps)
|
|
{
|
|
//sanity checks
|
|
CV_Assert( (src.cols == dstr.cols) && (src.rows == dstr.rows) &&
|
|
(src.rows == dstsp.rows) && (src.cols == dstsp.cols));
|
|
CV_Assert( !(dstsp.step & 0x3) );
|
|
Context *clCxt = src.clCxt;
|
|
|
|
//Arrange the NDRange
|
|
int col = src.cols, row = src.rows;
|
|
int ltx = 16, lty = 8;
|
|
if(src.cols % ltx != 0)
|
|
col = (col / ltx + 1) * ltx;
|
|
if(src.rows % lty != 0)
|
|
row = (row / lty + 1) * lty;
|
|
|
|
size_t globalThreads[3] = {col, row, 1};
|
|
size_t localThreads[3] = {ltx, lty, 1};
|
|
|
|
//set args
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dstr.data ));
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dstsp.data ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstsp.step ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstsp.offset ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.cols ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.rows ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sp ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&sr ));
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&maxIter ));
|
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&eps ));
|
|
openCLExecuteKernel(clCxt, &meanShift, "meanshiftproc_kernel", globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
|
|
void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr, TermCriteria criteria)
|
|
{
|
|
if( src.empty() )
|
|
CV_Error( CV_StsBadArg, "The input image is empty" );
|
|
|
|
if( src.depth() != CV_8U || src.channels() != 4 )
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
|
|
|
dstr.create( src.size(), CV_8UC4 );
|
|
dstsp.create( src.size(), CV_16SC2 );
|
|
|
|
if( !(criteria.type & TermCriteria::MAX_ITER) )
|
|
criteria.maxCount = 5;
|
|
|
|
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
|
|
|
|
float eps;
|
|
if( !(criteria.type & TermCriteria::EPS) )
|
|
eps = 1.f;
|
|
eps = (float)std::max(criteria.epsilon, 0.0);
|
|
|
|
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////hist///////////////////////////////////////////////
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
namespace histograms
|
|
{
|
|
const int PARTIAL_HISTOGRAM256_COUNT = 256;
|
|
const int HISTOGRAM256_BIN_COUNT = 256;
|
|
}
|
|
///////////////////////////////calcHist/////////////////////////////////////////////////////////////////
|
|
void calc_sub_hist(const oclMat &mat_src, const oclMat &mat_sub_hist)
|
|
{
|
|
using namespace histograms;
|
|
|
|
Context *clCxt = mat_src.clCxt;
|
|
int depth = mat_src.depth();
|
|
|
|
string kernelName = "calc_sub_hist";
|
|
|
|
size_t localThreads[3] = { 256, 1, 1 };
|
|
size_t globalThreads[3] = { PARTIAL_HISTOGRAM256_COUNT *localThreads[0], 1, 1};
|
|
|
|
int cols = mat_src.cols * mat_src.channels();
|
|
int src_offset = mat_src.offset;
|
|
int hist_step = mat_sub_hist.step >> 2;
|
|
int left_col = 0, right_col = 0;
|
|
if(cols > 6)
|
|
{
|
|
left_col = 4 - (src_offset & 3);
|
|
left_col &= 3;
|
|
//dst_offset +=left_col;
|
|
src_offset += left_col;
|
|
cols -= left_col;
|
|
right_col = cols & 3;
|
|
cols -= right_col;
|
|
//globalThreads[0] = (cols/4+globalThreads[0]-1)/localThreads[0]*localThreads[0];
|
|
}
|
|
else
|
|
{
|
|
left_col = cols;
|
|
right_col = 0;
|
|
cols = 0;
|
|
globalThreads[0] = 0;
|
|
}
|
|
|
|
vector<pair<size_t , const void *> > args;
|
|
if(globalThreads[0] != 0)
|
|
{
|
|
int tempcols = cols / 4;
|
|
int inc_x = globalThreads[0] % tempcols;
|
|
int inc_y = globalThreads[0] / tempcols;
|
|
src_offset /= 4;
|
|
int src_step = mat_src.step / 4;
|
|
int datacount = tempcols * mat_src.rows * mat_src.channels();
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&datacount));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&tempcols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&inc_x));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&inc_y));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&hist_step));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, depth);
|
|
}
|
|
if(left_col != 0 || right_col != 0)
|
|
{
|
|
kernelName = "calc_sub_hist2";
|
|
src_offset = mat_src.offset;
|
|
//dst_offset = dst.offset;
|
|
localThreads[0] = 1;
|
|
localThreads[1] = 256;
|
|
globalThreads[0] = left_col + right_col;
|
|
globalThreads[1] = (mat_src.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
|
|
//kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,"LUT2");
|
|
args.clear();
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&left_col));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&hist_step));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, depth);
|
|
}
|
|
}
|
|
void merge_sub_hist(const oclMat &sub_hist, oclMat &mat_hist)
|
|
{
|
|
using namespace histograms;
|
|
|
|
Context *clCxt = sub_hist.clCxt;
|
|
string kernelName = "merge_hist";
|
|
|
|
size_t localThreads[3] = { 256, 1, 1 };
|
|
size_t globalThreads[3] = { HISTOGRAM256_BIN_COUNT *localThreads[0], 1, 1};
|
|
int src_step = sub_hist.step >> 2;
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&sub_hist.data));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_hist.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, -1);
|
|
}
|
|
void calcHist(const oclMat &mat_src, oclMat &mat_hist)
|
|
{
|
|
using namespace histograms;
|
|
CV_Assert(mat_src.type() == CV_8UC1);
|
|
mat_hist.create(1, 256, CV_32SC1);
|
|
|
|
oclMat buf(PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_BIN_COUNT, CV_32SC1);
|
|
//buf.setTo(0);
|
|
calc_sub_hist(mat_src, buf);
|
|
merge_sub_hist(buf, mat_hist);
|
|
}
|
|
///////////////////////////////////equalizeHist/////////////////////////////////////////////////////
|
|
void equalizeHist(const oclMat &mat_src, oclMat &mat_dst)
|
|
{
|
|
mat_dst.create(mat_src.rows, mat_src.cols, CV_8UC1);
|
|
|
|
oclMat mat_hist(1, 256, CV_32SC1);
|
|
//mat_hist.setTo(0);
|
|
calcHist(mat_src, mat_hist);
|
|
|
|
Context *clCxt = mat_src.clCxt;
|
|
string kernelName = "calLUT";
|
|
size_t localThreads[3] = { 256, 1, 1};
|
|
size_t globalThreads[3] = { 256, 1, 1};
|
|
oclMat lut(1, 256, CV_8UC1);
|
|
vector<pair<size_t , const void *> > args;
|
|
float scale = 255.f / (mat_src.rows * mat_src.cols);
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&lut.data));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_hist.data));
|
|
args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
|
|
openCLExecuteKernel(clCxt, &imgproc_histogram, kernelName, globalThreads, localThreads, args, -1, -1);
|
|
LUT(mat_src, lut, mat_dst);
|
|
}
|
|
//////////////////////////////////bilateralFilter////////////////////////////////////////////////////
|
|
void bilateralFilter(const oclMat &src, oclMat &dst, int radius, double sigmaclr, double sigmaspc, int borderType)
|
|
{
|
|
double sigmacolor = -0.5 / (sigmaclr * sigmaclr);
|
|
double sigmaspace = -0.5 / (sigmaspc * sigmaspc);
|
|
dst.create(src.size(), src.type());
|
|
Context *clCxt = src.clCxt;
|
|
int r = radius;
|
|
int d = 2 * r + 1;
|
|
|
|
oclMat tmp;
|
|
Scalar valu(0, 0, 0, 0);
|
|
copyMakeBorder(src, tmp, r, r, r, r, borderType, valu);
|
|
|
|
tmp.offset = (src.offset / src.step + r) * tmp.step + (src.offset % src.step + r);
|
|
int src_offset = tmp.offset;
|
|
int channels = tmp.channels();
|
|
int rows = src.rows;//in pixel
|
|
int cols = src.cols;//in pixel
|
|
//int step = tmp.step;
|
|
int src_step = tmp.step;//in Byte
|
|
int dst_step = dst.step;//in Byte
|
|
int whole_rows = tmp.wholerows;//in pixel
|
|
int whole_cols = tmp.wholecols;//in pixel
|
|
int dst_offset = dst.offset;//in Byte
|
|
|
|
double rs;
|
|
size_t size_space = d * d * sizeof(float);
|
|
float *sigSpcH = (float *)malloc(size_space);
|
|
for(int i = -r; i <= r; i++)
|
|
{
|
|
for(int j = -r; j <= r; j++)
|
|
{
|
|
rs = std::sqrt(double(i * i) + (double)j * j);
|
|
|
|
sigSpcH[(i+r)*d+j+r] = rs > r ? 0 : (float)std::exp(rs * rs * sigmaspace);
|
|
}
|
|
}
|
|
|
|
size_t size_color = 256 * channels * sizeof(float);
|
|
float *sigClrH = (float *)malloc(size_color);
|
|
for(int i = 0; i < 256 * channels; i++)
|
|
{
|
|
sigClrH[i] = (float)std::exp(i * i * sigmacolor);
|
|
}
|
|
string kernelName;
|
|
if(1 == channels) kernelName = "bilateral";
|
|
if(4 == channels) kernelName = "bilateral4";
|
|
|
|
cl_int errcode_ret;
|
|
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &imgproc_bilateral, kernelName);
|
|
|
|
CV_Assert(src.channels() == dst.channels());
|
|
|
|
cl_mem sigClr = clCreateBuffer(clCxt->impl->clContext, CL_MEM_USE_HOST_PTR, size_color, sigClrH, &errcode_ret);
|
|
cl_mem sigSpc = clCreateBuffer(clCxt->impl->clContext, CL_MEM_USE_HOST_PTR, size_space, sigSpcH, &errcode_ret);
|
|
if(errcode_ret != CL_SUCCESS) printf("create buffer error\n");
|
|
openCLSafeCall(clSetKernelArg(kernel, 0, sizeof(void *), (void *)&dst.data));
|
|
openCLSafeCall(clSetKernelArg(kernel, 1, sizeof(void *), (void *)&tmp.data));
|
|
openCLSafeCall(clSetKernelArg(kernel, 2, sizeof(rows), (void *)&rows));
|
|
openCLSafeCall(clSetKernelArg(kernel, 3, sizeof(cols), (void *)&cols));
|
|
openCLSafeCall(clSetKernelArg(kernel, 4, sizeof(channels), (void *)&channels));
|
|
openCLSafeCall(clSetKernelArg(kernel, 5, sizeof(radius), (void *)&radius));
|
|
openCLSafeCall(clSetKernelArg(kernel, 6, sizeof(whole_rows), (void *)&whole_rows));
|
|
openCLSafeCall(clSetKernelArg(kernel, 7, sizeof(whole_cols), (void *)&whole_cols));
|
|
openCLSafeCall(clSetKernelArg(kernel, 8, sizeof(src_step), (void *)&src_step));
|
|
openCLSafeCall(clSetKernelArg(kernel, 9, sizeof(dst_step), (void *)&dst_step));
|
|
openCLSafeCall(clSetKernelArg(kernel, 10, sizeof(src_offset), (void *)&src_offset));
|
|
openCLSafeCall(clSetKernelArg(kernel, 11, sizeof(dst_offset), (void *)&dst_offset));
|
|
openCLSafeCall(clSetKernelArg(kernel, 12, sizeof(cl_mem), (void *)&sigClr));
|
|
openCLSafeCall(clSetKernelArg(kernel, 13, sizeof(cl_mem), (void *)&sigSpc));
|
|
|
|
openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, sigClr, CL_TRUE, 0, size_color, sigClrH, 0, NULL, NULL));
|
|
openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, sigSpc, CL_TRUE, 0, size_space, sigSpcH, 0, NULL, NULL));
|
|
|
|
size_t localSize[] = {16, 16};
|
|
size_t globalSize[] = {(cols / 16 + 1) * 16, (rows / 16 + 1) * 16};
|
|
openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 2, NULL, globalSize, localSize, 0, NULL, NULL));
|
|
|
|
clFinish(clCxt->impl->clCmdQueue);
|
|
openCLSafeCall(clReleaseKernel(kernel));
|
|
free(sigClrH);
|
|
free(sigSpcH);
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
#endif /* !defined (HAVE_OPENCL) */
|