57 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
from numpy import random
 | 
						|
import cv2
 | 
						|
 | 
						|
def make_gaussians(cluster_n, img_size):
 | 
						|
    points = []
 | 
						|
    ref_distrs = []
 | 
						|
    for i in xrange(cluster_n):
 | 
						|
        mean = (0.1 + 0.8*random.rand(2)) * img_size
 | 
						|
        a = (random.rand(2, 2)-0.5)*img_size*0.1
 | 
						|
        cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
 | 
						|
        n = 100 + random.randint(900)
 | 
						|
        pts = random.multivariate_normal(mean, cov, n)
 | 
						|
        points.append( pts )
 | 
						|
        ref_distrs.append( (mean, cov) )
 | 
						|
    points = np.float32( np.vstack(points) )
 | 
						|
    return points, ref_distrs
 | 
						|
 | 
						|
def draw_gaussain(img, mean, cov, color):
 | 
						|
    x, y = np.int32(mean)
 | 
						|
    w, u, vt = cv2.SVDecomp(cov)
 | 
						|
    ang = np.arctan2(u[1, 0], u[0, 0])*(180/np.pi)
 | 
						|
    s1, s2 = np.sqrt(w)*3.0
 | 
						|
    cv2.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv2.CV_AA)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    cluster_n = 5
 | 
						|
    img_size = 512
 | 
						|
 | 
						|
    print 'press any key to update distributions, ESC - exit\n'
 | 
						|
 | 
						|
    while True:
 | 
						|
        print 'sampling distributions...'
 | 
						|
        points, ref_distrs = make_gaussians(cluster_n, img_size)
 | 
						|
 | 
						|
        print 'EM (opencv) ...'
 | 
						|
        em = cv2.EM(points, params = dict( nclusters = cluster_n, cov_mat_type = cv2.EM_COV_MAT_GENERIC) )
 | 
						|
        means = em.getMeans()
 | 
						|
        covs = em.getCovs()
 | 
						|
        found_distrs = zip(means, covs)
 | 
						|
        print 'ready!\n'
 | 
						|
 | 
						|
        img = np.zeros((img_size, img_size, 3), np.uint8)
 | 
						|
        for x, y in np.int32(points):
 | 
						|
            cv2.circle(img, (x, y), 1, (255, 255, 255), -1)
 | 
						|
        for m, cov in ref_distrs:
 | 
						|
            draw_gaussain(img, m, cov, (0, 255, 0))
 | 
						|
        for m, cov in found_distrs:
 | 
						|
            draw_gaussain(img, m, cov, (0, 0, 255))
 | 
						|
 | 
						|
        cv2.imshow('gaussian mixture', img)
 | 
						|
        ch = 0xFF & cv2.waitKey(0)
 | 
						|
        if ch == 27:
 | 
						|
            break
 | 
						|
    cv2.destroyAllWindows() 			
 |