opencv/modules/ocl/src/optical_flow_farneback.cpp
Roman Donchenko 9c2272d520 Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	.gitignore
	CMakeLists.txt
	doc/CMakeLists.txt
	modules/calib3d/src/stereosgbm.cpp
	modules/core/include/opencv2/core/mat.hpp
	modules/highgui/src/cap_openni.cpp
	modules/ml/include/opencv2/ml/ml.hpp
	modules/objdetect/src/hog.cpp
	modules/ocl/perf/perf_color.cpp
	modules/ocl/src/arithm.cpp
	modules/ocl/src/filtering.cpp
	modules/ocl/src/imgproc.cpp
	modules/ocl/src/optical_flow_farneback.cpp
	platforms/scripts/camera_build.conf
	platforms/scripts/cmake_android_all_cameras.py
	samples/cpp/Qt_sample/main.cpp
	samples/cpp/tutorial_code/introduction/windows_visual_studio_Opencv/Test.cpp
2013-11-26 15:05:26 +04:00

543 lines
19 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#include "opencv2/video/tracking.hpp"
using namespace cv;
using namespace cv::ocl;
#define MIN_SIZE 32
namespace cv {
namespace ocl {
namespace optflow_farneback
{
oclMat g;
oclMat xg;
oclMat xxg;
oclMat gKer;
float ig[4];
inline void setGaussianBlurKernel(const float *c_gKer, int ksizeHalf)
{
cv::Mat t_gKer(1, ksizeHalf + 1, CV_32FC1, const_cast<float *>(c_gKer));
gKer.upload(t_gKer);
}
static void gaussianBlurOcl(const oclMat &src, int ksizeHalf, oclMat &dst)
{
String kernelName("gaussianBlur");
#ifdef ANDROID
size_t localThreads[3] = { 128, 1, 1 };
#else
size_t localThreads[3] = { 256, 1, 1 };
#endif
size_t globalThreads[3] = { src.cols, src.rows, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * sizeof(float);
CV_Assert(dst.size() == src.size());
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void polynomialExpansionOcl(const oclMat &src, int polyN, oclMat &dst)
{
String kernelName("polynomialExpansion");
#ifdef ANDROID
size_t localThreads[3] = { 128, 1, 1 };
#else
size_t localThreads[3] = { 256, 1, 1 };
#endif
size_t globalThreads[3] = { divUp(src.cols, localThreads[0] - 2*polyN) * localThreads[0], src.rows, 1 };
int smem_size = 3 * localThreads[0] * sizeof(float);
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&g.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&xg.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&xxg.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_float4), (void *)&ig));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
char opt [128];
sprintf(opt, "-D polyN=%d", polyN);
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1, opt);
}
static void updateMatricesOcl(const oclMat &flowx, const oclMat &flowy, const oclMat &R0, const oclMat &R1, oclMat &M)
{
String kernelName("updateMatrices");
#ifdef ANDROID
size_t localThreads[3] = { 32, 4, 1 };
#else
size_t localThreads[3] = { 32, 8, 1 };
#endif
size_t globalThreads[3] = { flowx.cols, flowx.rows, 1 };
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowy.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&R0.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&R1.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&M.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowy.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&R0.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&R1.step));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void boxFilter5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
{
String kernelName("boxFilter5");
int height = src.rows / 5;
#ifdef ANDROID
size_t localThreads[3] = { 128, 1, 1 };
#else
size_t localThreads[3] = { 256, 1, 1 };
#endif
size_t globalThreads[3] = { src.cols, height, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void updateFlowOcl(const oclMat &M, oclMat &flowx, oclMat &flowy)
{
String kernelName("updateFlow");
int cols = divUp(flowx.cols, 4);
#ifdef ANDROID
size_t localThreads[3] = { 32, 4, 1 };
#else
size_t localThreads[3] = { 32, 8, 1 };
#endif
size_t globalThreads[3] = { cols, flowx.rows, 1 };
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowy.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowx.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&flowy.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&M.step));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
static void gaussianBlur5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
{
String kernelName("gaussianBlur5");
int height = src.rows / 5;
#ifdef ANDROID
size_t localThreads[3] = { 128, 1, 1 };
#else
size_t localThreads[3] = { 256, 1, 1 };
#endif
size_t globalThreads[3] = { src.cols, height, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
args.push_back(std::make_pair(smem_size, (void *)NULL));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1);
}
}
}
} // namespace cv { namespace ocl { namespace optflow_farneback
static oclMat allocMatFromBuf(int rows, int cols, int type, oclMat &mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = oclMat(rows, cols, type);
}
cv::ocl::FarnebackOpticalFlow::FarnebackOpticalFlow()
{
numLevels = 5;
pyrScale = 0.5;
fastPyramids = false;
winSize = 13;
numIters = 10;
polyN = 5;
polySigma = 1.1;
flags = 0;
}
void cv::ocl::FarnebackOpticalFlow::releaseMemory()
{
frames_[0].release();
frames_[1].release();
pyrLevel_[0].release();
pyrLevel_[1].release();
M_.release();
bufM_.release();
R_[0].release();
R_[1].release();
blurredFrame_[0].release();
blurredFrame_[1].release();
pyramid0_.clear();
pyramid1_.clear();
}
void cv::ocl::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void cv::ocl::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
{
std::vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
cv::Mat t_g(1, n + 1, CV_32FC1, g);
cv::Mat t_xg(1, n + 1, CV_32FC1, xg);
cv::Mat t_xxg(1, n + 1, CV_32FC1, xxg);
optflow_farneback::g.upload(t_g);
optflow_farneback::xg.upload(t_xg);
optflow_farneback::xxg.upload(t_xxg);
optflow_farneback::ig[0] = static_cast<float>(ig11);
optflow_farneback::ig[1] = static_cast<float>(ig03);
optflow_farneback::ig[2] = static_cast<float>(ig33);
optflow_farneback::ig[3] = static_cast<float>(ig55);
}
void cv::ocl::FarnebackOpticalFlow::updateFlow_boxFilter(
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices)
{
optflow_farneback::boxFilter5Ocl(M, blockSize/2, bufM);
swap(M, bufM);
optflow_farneback::updateFlowOcl(M, flowx, flowy);
if (updateMatrices)
optflow_farneback::updateMatricesOcl(flowx, flowy, R0, R1, M);
}
void cv::ocl::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices)
{
optflow_farneback::gaussianBlur5Ocl(M, blockSize/2, bufM);
swap(M, bufM);
optflow_farneback::updateFlowOcl(M, flowx, flowy);
if (updateMatrices)
optflow_farneback::updateMatricesOcl(flowx, flowy, R0, R1, M);
}
void cv::ocl::FarnebackOpticalFlow::operator ()(
const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy)
{
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN == 5 || polyN == 7);
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
Size size = frame0.size();
oclMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
oclMat flowx0 = flowx;
oclMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels; numLevelsCropped++)
{
scale *= pyrScale;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
frame0.convertTo(frames_[0], CV_32F);
frame1.convertTo(frames_[1], CV_32F);
if (fastPyramids)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
pyrDown(pyramid0_[i - 1], pyramid0_[i]);
pyrDown(pyramid1_[i - 1], pyramid1_[i]);
}
}
setPolynomialExpansionConsts(polyN, polySigma);
for (int k = numLevelsCropped; k >= 0; k--)
{
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags & cv::OPTFLOW_USE_INITIAL_FLOW)
{
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR);
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR);
multiply(scale, curFlowX, curFlowX);
multiply(scale, curFlowY, curFlowY);
}
else
{
curFlowX.setTo(0);
curFlowY.setTo(0);
}
}
else
{
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR);
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR);
multiply(1./pyrScale, curFlowX, curFlowX);
multiply(1./pyrScale, curFlowY, curFlowY);
}
oclMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
oclMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
oclMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids)
{
optflow_farneback::polynomialExpansionOcl(pyramid0_[k], polyN, R[0]);
optflow_farneback::polynomialExpansionOcl(pyramid1_[k], polyN, R[1]);
}
else
{
oclMat blurredFrame[2] =
{
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
};
oclMat pyrLevel[2] =
{
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
optflow_farneback::gaussianBlurOcl(frames_[i], smoothSize/2, blurredFrame[i]);
resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR);
optflow_farneback::polynomialExpansionOcl(pyrLevel[i], polyN, R[i]);
}
}
optflow_farneback::updateMatricesOcl(curFlowX, curFlowY, R[0], R[1], M);
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
}
for (int i = 0; i < numIters; i++)
{
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
}