715 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			715 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b18 = .003f;
 | 
						|
 | 
						|
/* Subroutine */ int sstemr_(char *jobz, char *range, integer *n, real *d__, 
 | 
						|
	real *e, real *vl, real *vu, integer *il, integer *iu, integer *m, 
 | 
						|
	real *w, real *z__, integer *ldz, integer *nzc, integer *isuppz, 
 | 
						|
	logical *tryrac, real *work, integer *lwork, integer *iwork, integer *
 | 
						|
	liwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer z_dim1, z_offset, i__1, i__2;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j;
 | 
						|
    real r1, r2;
 | 
						|
    integer jj;
 | 
						|
    real cs;
 | 
						|
    integer in;
 | 
						|
    real sn, wl, wu;
 | 
						|
    integer iil, iiu;
 | 
						|
    real eps, tmp;
 | 
						|
    integer indd, iend, jblk, wend;
 | 
						|
    real rmin, rmax;
 | 
						|
    integer itmp;
 | 
						|
    real tnrm;
 | 
						|
    integer inde2;
 | 
						|
    extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *)
 | 
						|
	    ;
 | 
						|
    integer itmp2;
 | 
						|
    real rtol1, rtol2, scale;
 | 
						|
    integer indgp;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer iinfo;
 | 
						|
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
 | 
						|
    integer iindw, ilast, lwmin;
 | 
						|
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
 | 
						|
);
 | 
						|
    logical wantz;
 | 
						|
    extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real *
 | 
						|
, real *, real *);
 | 
						|
    logical alleig;
 | 
						|
    integer ibegin;
 | 
						|
    logical indeig;
 | 
						|
    integer iindbl;
 | 
						|
    logical valeig;
 | 
						|
    extern doublereal slamch_(char *);
 | 
						|
    integer wbegin;
 | 
						|
    real safmin;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *);
 | 
						|
    real bignum;
 | 
						|
    integer inderr, iindwk, indgrs, offset;
 | 
						|
    extern /* Subroutine */ int slarrc_(char *, integer *, real *, real *, 
 | 
						|
	    real *, real *, real *, integer *, integer *, integer *, integer *
 | 
						|
), slarre_(char *, integer *, real *, real *, integer *, 
 | 
						|
	    integer *, real *, real *, real *, real *, real *, real *, 
 | 
						|
	    integer *, integer *, integer *, real *, real *, real *, integer *
 | 
						|
, integer *, real *, real *, real *, integer *, integer *)
 | 
						|
	    ;
 | 
						|
    real thresh;
 | 
						|
    integer iinspl, indwrk, ifirst, liwmin, nzcmin;
 | 
						|
    real pivmin;
 | 
						|
    extern doublereal slanst_(char *, integer *, real *, real *);
 | 
						|
    extern /* Subroutine */ int slarrj_(integer *, real *, real *, integer *, 
 | 
						|
	    integer *, real *, integer *, real *, real *, real *, integer *, 
 | 
						|
	    real *, real *, integer *), slarrr_(integer *, real *, real *, 
 | 
						|
	    integer *);
 | 
						|
    integer nsplit;
 | 
						|
    extern /* Subroutine */ int slarrv_(integer *, real *, real *, real *, 
 | 
						|
	    real *, real *, integer *, integer *, integer *, integer *, real *
 | 
						|
, real *, real *, real *, real *, real *, integer *, integer *, 
 | 
						|
	    real *, real *, integer *, integer *, real *, integer *, integer *
 | 
						|
);
 | 
						|
    real smlnum;
 | 
						|
    extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
 | 
						|
    logical lquery, zquery;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  SSTEMR computes selected eigenvalues and, optionally, eigenvectors */
 | 
						|
/*  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
 | 
						|
/*  a well defined set of pairwise different real eigenvalues, the corresponding */
 | 
						|
/*  real eigenvectors are pairwise orthogonal. */
 | 
						|
 | 
						|
/*  The spectrum may be computed either completely or partially by specifying */
 | 
						|
/*  either an interval (VL,VU] or a range of indices IL:IU for the desired */
 | 
						|
/*  eigenvalues. */
 | 
						|
 | 
						|
/*  Depending on the number of desired eigenvalues, these are computed either */
 | 
						|
/*  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
 | 
						|
/*  computed by the use of various suitable L D L^T factorizations near clusters */
 | 
						|
/*  of close eigenvalues (referred to as RRRs, Relatively Robust */
 | 
						|
/*  Representations). An informal sketch of the algorithm follows. */
 | 
						|
 | 
						|
/*  For each unreduced block (submatrix) of T, */
 | 
						|
/*     (a) Compute T - sigma I  = L D L^T, so that L and D */
 | 
						|
/*         define all the wanted eigenvalues to high relative accuracy. */
 | 
						|
/*         This means that small relative changes in the entries of D and L */
 | 
						|
/*         cause only small relative changes in the eigenvalues and */
 | 
						|
/*         eigenvectors. The standard (unfactored) representation of the */
 | 
						|
/*         tridiagonal matrix T does not have this property in general. */
 | 
						|
/*     (b) Compute the eigenvalues to suitable accuracy. */
 | 
						|
/*         If the eigenvectors are desired, the algorithm attains full */
 | 
						|
/*         accuracy of the computed eigenvalues only right before */
 | 
						|
/*         the corresponding vectors have to be computed, see steps c) and d). */
 | 
						|
/*     (c) For each cluster of close eigenvalues, select a new */
 | 
						|
/*         shift close to the cluster, find a new factorization, and refine */
 | 
						|
/*         the shifted eigenvalues to suitable accuracy. */
 | 
						|
/*     (d) For each eigenvalue with a large enough relative separation compute */
 | 
						|
/*         the corresponding eigenvector by forming a rank revealing twisted */
 | 
						|
/*         factorization. Go back to (c) for any clusters that remain. */
 | 
						|
 | 
						|
/*  For more details, see: */
 | 
						|
/*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
 | 
						|
/*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
 | 
						|
/*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
 | 
						|
/*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
 | 
						|
/*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
 | 
						|
/*    2004.  Also LAPACK Working Note 154. */
 | 
						|
/*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
 | 
						|
/*    tridiagonal eigenvalue/eigenvector problem", */
 | 
						|
/*    Computer Science Division Technical Report No. UCB/CSD-97-971, */
 | 
						|
/*    UC Berkeley, May 1997. */
 | 
						|
 | 
						|
/*  Notes: */
 | 
						|
/*  1.SSTEMR works only on machines which follow IEEE-754 */
 | 
						|
/*  floating-point standard in their handling of infinities and NaNs. */
 | 
						|
/*  This permits the use of efficient inner loops avoiding a check for */
 | 
						|
/*  zero divisors. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  JOBZ    (input) CHARACTER*1 */
 | 
						|
/*          = 'N':  Compute eigenvalues only; */
 | 
						|
/*          = 'V':  Compute eigenvalues and eigenvectors. */
 | 
						|
 | 
						|
/*  RANGE   (input) CHARACTER*1 */
 | 
						|
/*          = 'A': all eigenvalues will be found. */
 | 
						|
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | 
						|
/*                 will be found. */
 | 
						|
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix.  N >= 0. */
 | 
						|
 | 
						|
/*  D       (input/output) REAL array, dimension (N) */
 | 
						|
/*          On entry, the N diagonal elements of the tridiagonal matrix */
 | 
						|
/*          T. On exit, D is overwritten. */
 | 
						|
 | 
						|
/*  E       (input/output) REAL array, dimension (N) */
 | 
						|
/*          On entry, the (N-1) subdiagonal elements of the tridiagonal */
 | 
						|
/*          matrix T in elements 1 to N-1 of E. E(N) need not be set on */
 | 
						|
/*          input, but is used internally as workspace. */
 | 
						|
/*          On exit, E is overwritten. */
 | 
						|
 | 
						|
/*  VL      (input) REAL */
 | 
						|
/*  VU      (input) REAL */
 | 
						|
/*          If RANGE='V', the lower and upper bounds of the interval to */
 | 
						|
/*          be searched for eigenvalues. VL < VU. */
 | 
						|
/*          Not referenced if RANGE = 'A' or 'I'. */
 | 
						|
 | 
						|
/*  IL      (input) INTEGER */
 | 
						|
/*  IU      (input) INTEGER */
 | 
						|
/*          If RANGE='I', the indices (in ascending order) of the */
 | 
						|
/*          smallest and largest eigenvalues to be returned. */
 | 
						|
/*          1 <= IL <= IU <= N, if N > 0. */
 | 
						|
/*          Not referenced if RANGE = 'A' or 'V'. */
 | 
						|
 | 
						|
/*  M       (output) INTEGER */
 | 
						|
/*          The total number of eigenvalues found.  0 <= M <= N. */
 | 
						|
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | 
						|
 | 
						|
/*  W       (output) REAL array, dimension (N) */
 | 
						|
/*          The first M elements contain the selected eigenvalues in */
 | 
						|
/*          ascending order. */
 | 
						|
 | 
						|
/*  Z       (output) REAL array, dimension (LDZ, max(1,M) ) */
 | 
						|
/*          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
 | 
						|
/*          contain the orthonormal eigenvectors of the matrix T */
 | 
						|
/*          corresponding to the selected eigenvalues, with the i-th */
 | 
						|
/*          column of Z holding the eigenvector associated with W(i). */
 | 
						|
/*          If JOBZ = 'N', then Z is not referenced. */
 | 
						|
/*          Note: the user must ensure that at least max(1,M) columns are */
 | 
						|
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | 
						|
/*          is not known in advance and can be computed with a workspace */
 | 
						|
/*          query by setting NZC = -1, see below. */
 | 
						|
 | 
						|
/*  LDZ     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
 | 
						|
/*          JOBZ = 'V', then LDZ >= max(1,N). */
 | 
						|
 | 
						|
/*  NZC     (input) INTEGER */
 | 
						|
/*          The number of eigenvectors to be held in the array Z. */
 | 
						|
/*          If RANGE = 'A', then NZC >= max(1,N). */
 | 
						|
/*          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
 | 
						|
/*          If RANGE = 'I', then NZC >= IU-IL+1. */
 | 
						|
/*          If NZC = -1, then a workspace query is assumed; the */
 | 
						|
/*          routine calculates the number of columns of the array Z that */
 | 
						|
/*          are needed to hold the eigenvectors. */
 | 
						|
/*          This value is returned as the first entry of the Z array, and */
 | 
						|
/*          no error message related to NZC is issued by XERBLA. */
 | 
						|
 | 
						|
/*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */
 | 
						|
/*          The support of the eigenvectors in Z, i.e., the indices */
 | 
						|
/*          indicating the nonzero elements in Z. The i-th computed eigenvector */
 | 
						|
/*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
 | 
						|
/*          ISUPPZ( 2*i ). This is relevant in the case when the matrix */
 | 
						|
/*          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
 | 
						|
 | 
						|
/*  TRYRAC  (input/output) LOGICAL */
 | 
						|
/*          If TRYRAC.EQ..TRUE., indicates that the code should check whether */
 | 
						|
/*          the tridiagonal matrix defines its eigenvalues to high relative */
 | 
						|
/*          accuracy.  If so, the code uses relative-accuracy preserving */
 | 
						|
/*          algorithms that might be (a bit) slower depending on the matrix. */
 | 
						|
/*          If the matrix does not define its eigenvalues to high relative */
 | 
						|
/*          accuracy, the code can uses possibly faster algorithms. */
 | 
						|
/*          If TRYRAC.EQ..FALSE., the code is not required to guarantee */
 | 
						|
/*          relatively accurate eigenvalues and can use the fastest possible */
 | 
						|
/*          techniques. */
 | 
						|
/*          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
 | 
						|
/*          does not define its eigenvalues to high relative accuracy. */
 | 
						|
 | 
						|
/*  WORK    (workspace/output) REAL array, dimension (LWORK) */
 | 
						|
/*          On exit, if INFO = 0, WORK(1) returns the optimal */
 | 
						|
/*          (and minimal) LWORK. */
 | 
						|
 | 
						|
/*  LWORK   (input) INTEGER */
 | 
						|
/*          The dimension of the array WORK. LWORK >= max(1,18*N) */
 | 
						|
/*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */
 | 
						|
/*          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/*          only calculates the optimal size of the WORK array, returns */
 | 
						|
/*          this value as the first entry of the WORK array, and no error */
 | 
						|
/*          message related to LWORK is issued by XERBLA. */
 | 
						|
 | 
						|
/*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) */
 | 
						|
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 | 
						|
 | 
						|
/*  LIWORK  (input) INTEGER */
 | 
						|
/*          The dimension of the array IWORK.  LIWORK >= max(1,10*N) */
 | 
						|
/*          if the eigenvectors are desired, and LIWORK >= max(1,8*N) */
 | 
						|
/*          if only the eigenvalues are to be computed. */
 | 
						|
/*          If LIWORK = -1, then a workspace query is assumed; the */
 | 
						|
/*          routine only calculates the optimal size of the IWORK array, */
 | 
						|
/*          returns this value as the first entry of the IWORK array, and */
 | 
						|
/*          no error message related to LIWORK is issued by XERBLA. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          On exit, INFO */
 | 
						|
/*          = 0:  successful exit */
 | 
						|
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/*          > 0:  if INFO = 1X, internal error in SLARRE, */
 | 
						|
/*                if INFO = 2X, internal error in SLARRV. */
 | 
						|
/*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
 | 
						|
/*                the nonzero error code returned by SLARRE or */
 | 
						|
/*                SLARRV, respectively. */
 | 
						|
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Beresford Parlett, University of California, Berkeley, USA */
 | 
						|
/*     Jim Demmel, University of California, Berkeley, USA */
 | 
						|
/*     Inderjit Dhillon, University of Texas, Austin, USA */
 | 
						|
/*     Osni Marques, LBNL/NERSC, USA */
 | 
						|
/*     Christof Voemel, University of California, Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    --w;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --isuppz;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    wantz = lsame_(jobz, "V");
 | 
						|
    alleig = lsame_(range, "A");
 | 
						|
    valeig = lsame_(range, "V");
 | 
						|
    indeig = lsame_(range, "I");
 | 
						|
 | 
						|
    lquery = *lwork == -1 || *liwork == -1;
 | 
						|
    zquery = *nzc == -1;
 | 
						|
    *tryrac = *info != 0;
 | 
						|
/*     SSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
 | 
						|
/*     In addition, SLARRE needs WORK of size 6*N, IWORK of size 5*N. */
 | 
						|
/*     Furthermore, SLARRV needs WORK of size 12*N, IWORK of size 7*N. */
 | 
						|
    if (wantz) {
 | 
						|
	lwmin = *n * 18;
 | 
						|
	liwmin = *n * 10;
 | 
						|
    } else {
 | 
						|
/*        need less workspace if only the eigenvalues are wanted */
 | 
						|
	lwmin = *n * 12;
 | 
						|
	liwmin = *n << 3;
 | 
						|
    }
 | 
						|
    wl = 0.f;
 | 
						|
    wu = 0.f;
 | 
						|
    iil = 0;
 | 
						|
    iiu = 0;
 | 
						|
    if (valeig) {
 | 
						|
/*        We do not reference VL, VU in the cases RANGE = 'I','A' */
 | 
						|
/*        The interval (WL, WU] contains all the wanted eigenvalues. */
 | 
						|
/*        It is either given by the user or computed in SLARRE. */
 | 
						|
	wl = *vl;
 | 
						|
	wu = *vu;
 | 
						|
    } else if (indeig) {
 | 
						|
/*        We do not reference IL, IU in the cases RANGE = 'V','A' */
 | 
						|
	iil = *il;
 | 
						|
	iiu = *iu;
 | 
						|
    }
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    if (! (wantz || lsame_(jobz, "N"))) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (alleig || valeig || indeig)) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (valeig && *n > 0 && wu <= wl) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (indeig && (iil < 1 || iil > *n)) {
 | 
						|
	*info = -8;
 | 
						|
    } else if (indeig && (iiu < iil || iiu > *n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (*ldz < 1 || wantz && *ldz < *n) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*lwork < lwmin && ! lquery) {
 | 
						|
	*info = -17;
 | 
						|
    } else if (*liwork < liwmin && ! lquery) {
 | 
						|
	*info = -19;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants. */
 | 
						|
 | 
						|
    safmin = slamch_("Safe minimum");
 | 
						|
    eps = slamch_("Precision");
 | 
						|
    smlnum = safmin / eps;
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    rmin = sqrt(smlnum);
 | 
						|
/* Computing MIN */
 | 
						|
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
 | 
						|
    rmax = dmin(r__1,r__2);
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	work[1] = (real) lwmin;
 | 
						|
	iwork[1] = liwmin;
 | 
						|
 | 
						|
	if (wantz && alleig) {
 | 
						|
	    nzcmin = *n;
 | 
						|
	} else if (wantz && valeig) {
 | 
						|
	    slarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
 | 
						|
		    itmp2, info);
 | 
						|
	} else if (wantz && indeig) {
 | 
						|
	    nzcmin = iiu - iil + 1;
 | 
						|
	} else {
 | 
						|
/*           WANTZ .EQ. FALSE. */
 | 
						|
	    nzcmin = 0;
 | 
						|
	}
 | 
						|
	if (zquery && *info == 0) {
 | 
						|
	    z__[z_dim1 + 1] = (real) nzcmin;
 | 
						|
	} else if (*nzc < nzcmin && ! zquery) {
 | 
						|
	    *info = -14;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SSTEMR", &i__1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
    } else if (lquery || zquery) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Handle N = 0, 1, and 2 cases immediately */
 | 
						|
 | 
						|
    *m = 0;
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 1) {
 | 
						|
	if (alleig || indeig) {
 | 
						|
	    *m = 1;
 | 
						|
	    w[1] = d__[1];
 | 
						|
	} else {
 | 
						|
	    if (wl < d__[1] && wu >= d__[1]) {
 | 
						|
		*m = 1;
 | 
						|
		w[1] = d__[1];
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (wantz && ! zquery) {
 | 
						|
	    z__[z_dim1 + 1] = 1.f;
 | 
						|
	    isuppz[1] = 1;
 | 
						|
	    isuppz[2] = 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n == 2) {
 | 
						|
	if (! wantz) {
 | 
						|
	    slae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
 | 
						|
	} else if (wantz && ! zquery) {
 | 
						|
	    slaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
 | 
						|
	}
 | 
						|
	if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
 | 
						|
	    ++(*m);
 | 
						|
	    w[*m] = r2;
 | 
						|
	    if (wantz && ! zquery) {
 | 
						|
		z__[*m * z_dim1 + 1] = -sn;
 | 
						|
		z__[*m * z_dim1 + 2] = cs;
 | 
						|
/*              Note: At most one of SN and CS can be zero. */
 | 
						|
		if (sn != 0.f) {
 | 
						|
		    if (cs != 0.f) {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[(*m << 1) - 1] = 2;
 | 
						|
		    } else {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    isuppz[(*m << 1) - 1] = 2;
 | 
						|
		    isuppz[*m * 2] = 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
 | 
						|
	    ++(*m);
 | 
						|
	    w[*m] = r1;
 | 
						|
	    if (wantz && ! zquery) {
 | 
						|
		z__[*m * z_dim1 + 1] = cs;
 | 
						|
		z__[*m * z_dim1 + 2] = sn;
 | 
						|
/*              Note: At most one of SN and CS can be zero. */
 | 
						|
		if (sn != 0.f) {
 | 
						|
		    if (cs != 0.f) {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[(*m << 1) - 1] = 2;
 | 
						|
		    } else {
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
			isuppz[(*m << 1) - 1] = 1;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    isuppz[(*m << 1) - 1] = 2;
 | 
						|
		    isuppz[*m * 2] = 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
/*     Continue with general N */
 | 
						|
    indgrs = 1;
 | 
						|
    inderr = (*n << 1) + 1;
 | 
						|
    indgp = *n * 3 + 1;
 | 
						|
    indd = (*n << 2) + 1;
 | 
						|
    inde2 = *n * 5 + 1;
 | 
						|
    indwrk = *n * 6 + 1;
 | 
						|
 | 
						|
    iinspl = 1;
 | 
						|
    iindbl = *n + 1;
 | 
						|
    iindw = (*n << 1) + 1;
 | 
						|
    iindwk = *n * 3 + 1;
 | 
						|
 | 
						|
/*     Scale matrix to allowable range, if necessary. */
 | 
						|
/*     The allowable range is related to the PIVMIN parameter; see the */
 | 
						|
/*     comments in SLARRD.  The preference for scaling small values */
 | 
						|
/*     up is heuristic; we expect users' matrices not to be close to the */
 | 
						|
/*     RMAX threshold. */
 | 
						|
 | 
						|
    scale = 1.f;
 | 
						|
    tnrm = slanst_("M", n, &d__[1], &e[1]);
 | 
						|
    if (tnrm > 0.f && tnrm < rmin) {
 | 
						|
	scale = rmin / tnrm;
 | 
						|
    } else if (tnrm > rmax) {
 | 
						|
	scale = rmax / tnrm;
 | 
						|
    }
 | 
						|
    if (scale != 1.f) {
 | 
						|
	sscal_(n, &scale, &d__[1], &c__1);
 | 
						|
	i__1 = *n - 1;
 | 
						|
	sscal_(&i__1, &scale, &e[1], &c__1);
 | 
						|
	tnrm *= scale;
 | 
						|
	if (valeig) {
 | 
						|
/*           If eigenvalues in interval have to be found, */
 | 
						|
/*           scale (WL, WU] accordingly */
 | 
						|
	    wl *= scale;
 | 
						|
	    wu *= scale;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute the desired eigenvalues of the tridiagonal after splitting */
 | 
						|
/*     into smaller subblocks if the corresponding off-diagonal elements */
 | 
						|
/*     are small */
 | 
						|
/*     THRESH is the splitting parameter for SLARRE */
 | 
						|
/*     A negative THRESH forces the old splitting criterion based on the */
 | 
						|
/*     size of the off-diagonal. A positive THRESH switches to splitting */
 | 
						|
/*     which preserves relative accuracy. */
 | 
						|
 | 
						|
    if (*tryrac) {
 | 
						|
/*        Test whether the matrix warrants the more expensive relative approach. */
 | 
						|
	slarrr_(n, &d__[1], &e[1], &iinfo);
 | 
						|
    } else {
 | 
						|
/*        The user does not care about relative accurately eigenvalues */
 | 
						|
	iinfo = -1;
 | 
						|
    }
 | 
						|
/*     Set the splitting criterion */
 | 
						|
    if (iinfo == 0) {
 | 
						|
	thresh = eps;
 | 
						|
    } else {
 | 
						|
	thresh = -eps;
 | 
						|
/*        relative accuracy is desired but T does not guarantee it */
 | 
						|
	*tryrac = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*tryrac) {
 | 
						|
/*        Copy original diagonal, needed to guarantee relative accuracy */
 | 
						|
	scopy_(n, &d__[1], &c__1, &work[indd], &c__1);
 | 
						|
    }
 | 
						|
/*     Store the squares of the offdiagonal values of T */
 | 
						|
    i__1 = *n - 1;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__1 = e[j];
 | 
						|
	work[inde2 + j - 1] = r__1 * r__1;
 | 
						|
/* L5: */
 | 
						|
    }
 | 
						|
/*     Set the tolerance parameters for bisection */
 | 
						|
    if (! wantz) {
 | 
						|
/*        SLARRE computes the eigenvalues to full precision. */
 | 
						|
	rtol1 = eps * 4.f;
 | 
						|
	rtol2 = eps * 4.f;
 | 
						|
    } else {
 | 
						|
/*        SLARRE computes the eigenvalues to less than full precision. */
 | 
						|
/*        SLARRV will refine the eigenvalue approximations, and we can */
 | 
						|
/*        need less accurate initial bisection in SLARRE. */
 | 
						|
/*        Note: these settings do only affect the subset case and SLARRE */
 | 
						|
/* Computing MAX */
 | 
						|
	r__1 = sqrt(eps) * .05f, r__2 = eps * 4.f;
 | 
						|
	rtol1 = dmax(r__1,r__2);
 | 
						|
/* Computing MAX */
 | 
						|
	r__1 = sqrt(eps) * .005f, r__2 = eps * 4.f;
 | 
						|
	rtol2 = dmax(r__1,r__2);
 | 
						|
    }
 | 
						|
    slarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], &
 | 
						|
	    rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[
 | 
						|
	    inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[
 | 
						|
	    indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
 | 
						|
    if (iinfo != 0) {
 | 
						|
	*info = abs(iinfo) + 10;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
/*     Note that if RANGE .NE. 'V', SLARRE computes bounds on the desired */
 | 
						|
/*     part of the spectrum. All desired eigenvalues are contained in */
 | 
						|
/*     (WL,WU] */
 | 
						|
    if (wantz) {
 | 
						|
 | 
						|
/*        Compute the desired eigenvectors corresponding to the computed */
 | 
						|
/*        eigenvalues */
 | 
						|
 | 
						|
	slarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
 | 
						|
		c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[
 | 
						|
		indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[
 | 
						|
		z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], &
 | 
						|
		iinfo);
 | 
						|
	if (iinfo != 0) {
 | 
						|
	    *info = abs(iinfo) + 20;
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
/*        SLARRE computes eigenvalues of the (shifted) root representation */
 | 
						|
/*        SLARRV returns the eigenvalues of the unshifted matrix. */
 | 
						|
/*        However, if the eigenvectors are not desired by the user, we need */
 | 
						|
/*        to apply the corresponding shifts from SLARRE to obtain the */
 | 
						|
/*        eigenvalues of the original matrix. */
 | 
						|
	i__1 = *m;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    itmp = iwork[iindbl + j - 1];
 | 
						|
	    w[j] += e[iwork[iinspl + itmp - 1]];
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*tryrac) {
 | 
						|
/*        Refine computed eigenvalues so that they are relatively accurate */
 | 
						|
/*        with respect to the original matrix T. */
 | 
						|
	ibegin = 1;
 | 
						|
	wbegin = 1;
 | 
						|
	i__1 = iwork[iindbl + *m - 1];
 | 
						|
	for (jblk = 1; jblk <= i__1; ++jblk) {
 | 
						|
	    iend = iwork[iinspl + jblk - 1];
 | 
						|
	    in = iend - ibegin + 1;
 | 
						|
	    wend = wbegin - 1;
 | 
						|
/*           check if any eigenvalues have to be refined in this block */
 | 
						|
L36:
 | 
						|
	    if (wend < *m) {
 | 
						|
		if (iwork[iindbl + wend] == jblk) {
 | 
						|
		    ++wend;
 | 
						|
		    goto L36;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    if (wend < wbegin) {
 | 
						|
		ibegin = iend + 1;
 | 
						|
		goto L39;
 | 
						|
	    }
 | 
						|
	    offset = iwork[iindw + wbegin - 1] - 1;
 | 
						|
	    ifirst = iwork[iindw + wbegin - 1];
 | 
						|
	    ilast = iwork[iindw + wend - 1];
 | 
						|
	    rtol2 = eps * 4.f;
 | 
						|
	    slarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], 
 | 
						|
		    &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[
 | 
						|
		    inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], &
 | 
						|
		    pivmin, &tnrm, &iinfo);
 | 
						|
	    ibegin = iend + 1;
 | 
						|
	    wbegin = wend + 1;
 | 
						|
L39:
 | 
						|
	    ;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     If matrix was scaled, then rescale eigenvalues appropriately. */
 | 
						|
 | 
						|
    if (scale != 1.f) {
 | 
						|
	r__1 = 1.f / scale;
 | 
						|
	sscal_(m, &r__1, &w[1], &c__1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     If eigenvalues are not in increasing order, then sort them, */
 | 
						|
/*     possibly along with eigenvectors. */
 | 
						|
 | 
						|
    if (nsplit > 1) {
 | 
						|
	if (! wantz) {
 | 
						|
	    slasrt_("I", m, &w[1], &iinfo);
 | 
						|
	    if (iinfo != 0) {
 | 
						|
		*info = 3;
 | 
						|
		return 0;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *m - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__ = 0;
 | 
						|
		tmp = w[j];
 | 
						|
		i__2 = *m;
 | 
						|
		for (jj = j + 1; jj <= i__2; ++jj) {
 | 
						|
		    if (w[jj] < tmp) {
 | 
						|
			i__ = jj;
 | 
						|
			tmp = w[jj];
 | 
						|
		    }
 | 
						|
/* L50: */
 | 
						|
		}
 | 
						|
		if (i__ != 0) {
 | 
						|
		    w[i__] = w[j];
 | 
						|
		    w[j] = tmp;
 | 
						|
		    if (wantz) {
 | 
						|
			sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 
 | 
						|
				z_dim1 + 1], &c__1);
 | 
						|
			itmp = isuppz[(i__ << 1) - 1];
 | 
						|
			isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
 | 
						|
			isuppz[(j << 1) - 1] = itmp;
 | 
						|
			itmp = isuppz[i__ * 2];
 | 
						|
			isuppz[i__ * 2] = isuppz[j * 2];
 | 
						|
			isuppz[j * 2] = itmp;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/* L60: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    work[1] = (real) lwmin;
 | 
						|
    iwork[1] = liwmin;
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SSTEMR */
 | 
						|
 | 
						|
} /* sstemr_ */
 |