163 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Subroutine */ int slarrr_(integer *n, real *d__, real *e, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1;
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__;
 | 
						|
    real eps, tmp, tmp2, rmin, offdig;
 | 
						|
    extern doublereal slamch_(char *);
 | 
						|
    real safmin;
 | 
						|
    logical yesrel;
 | 
						|
    real smlnum, offdig2;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  Perform tests to decide whether the symmetric tridiagonal matrix T */
 | 
						|
/*  warrants expensive computations which guarantee high relative accuracy */
 | 
						|
/*  in the eigenvalues. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix. N > 0. */
 | 
						|
 | 
						|
/*  D       (input) REAL             array, dimension (N) */
 | 
						|
/*          The N diagonal elements of the tridiagonal matrix T. */
 | 
						|
 | 
						|
/*  E       (input/output) REAL             array, dimension (N) */
 | 
						|
/*          On entry, the first (N-1) entries contain the subdiagonal */
 | 
						|
/*          elements of the tridiagonal matrix T; E(N) is set to ZERO. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          INFO = 0(default) : the matrix warrants computations preserving */
 | 
						|
/*                              relative accuracy. */
 | 
						|
/*          INFO = 1          : the matrix warrants computations guaranteeing */
 | 
						|
/*                              only absolute accuracy. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Beresford Parlett, University of California, Berkeley, USA */
 | 
						|
/*     Jim Demmel, University of California, Berkeley, USA */
 | 
						|
/*     Inderjit Dhillon, University of Texas, Austin, USA */
 | 
						|
/*     Osni Marques, LBNL/NERSC, USA */
 | 
						|
/*     Christof Voemel, University of California, Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     As a default, do NOT go for relative-accuracy preserving computations. */
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --e;
 | 
						|
    --d__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 1;
 | 
						|
    safmin = slamch_("Safe minimum");
 | 
						|
    eps = slamch_("Precision");
 | 
						|
    smlnum = safmin / eps;
 | 
						|
    rmin = sqrt(smlnum);
 | 
						|
/*     Tests for relative accuracy */
 | 
						|
 | 
						|
/*     Test for scaled diagonal dominance */
 | 
						|
/*     Scale the diagonal entries to one and check whether the sum of the */
 | 
						|
/*     off-diagonals is less than one */
 | 
						|
 | 
						|
/*     The sdd relative error bounds have a 1/(1- 2*x) factor in them, */
 | 
						|
/*     x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative */
 | 
						|
/*     accuracy is promised.  In the notation of the code fragment below, */
 | 
						|
/*     1/(1 - (OFFDIG + OFFDIG2)) is the condition number. */
 | 
						|
/*     We don't think it is worth going into "sdd mode" unless the relative */
 | 
						|
/*     condition number is reasonable, not 1/macheps. */
 | 
						|
/*     The threshold should be compatible with other thresholds used in the */
 | 
						|
/*     code. We set  OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds */
 | 
						|
/*     to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000 */
 | 
						|
/*     instead of the current OFFDIG + OFFDIG2 < 1 */
 | 
						|
 | 
						|
    yesrel = TRUE_;
 | 
						|
    offdig = 0.f;
 | 
						|
    tmp = sqrt((dabs(d__[1])));
 | 
						|
    if (tmp < rmin) {
 | 
						|
	yesrel = FALSE_;
 | 
						|
    }
 | 
						|
    if (! yesrel) {
 | 
						|
	goto L11;
 | 
						|
    }
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	tmp2 = sqrt((r__1 = d__[i__], dabs(r__1)));
 | 
						|
	if (tmp2 < rmin) {
 | 
						|
	    yesrel = FALSE_;
 | 
						|
	}
 | 
						|
	if (! yesrel) {
 | 
						|
	    goto L11;
 | 
						|
	}
 | 
						|
	offdig2 = (r__1 = e[i__ - 1], dabs(r__1)) / (tmp * tmp2);
 | 
						|
	if (offdig + offdig2 >= .999f) {
 | 
						|
	    yesrel = FALSE_;
 | 
						|
	}
 | 
						|
	if (! yesrel) {
 | 
						|
	    goto L11;
 | 
						|
	}
 | 
						|
	tmp = tmp2;
 | 
						|
	offdig = offdig2;
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
L11:
 | 
						|
    if (yesrel) {
 | 
						|
	*info = 0;
 | 
						|
	return 0;
 | 
						|
    } else {
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/*     *** MORE TO BE IMPLEMENTED *** */
 | 
						|
 | 
						|
 | 
						|
/*     Test if the lower bidiagonal matrix L from T = L D L^T */
 | 
						|
/*     (zero shift facto) is well conditioned */
 | 
						|
 | 
						|
 | 
						|
/*     Test if the upper bidiagonal matrix U from T = U D U^T */
 | 
						|
/*     (zero shift facto) is well conditioned. */
 | 
						|
/*     In this case, the matrix needs to be flipped and, at the end */
 | 
						|
/*     of the eigenvector computation, the flip needs to be applied */
 | 
						|
/*     to the computed eigenvectors (and the support) */
 | 
						|
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     END OF SLARRR */
 | 
						|
 | 
						|
} /* slarrr_ */
 |