176 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Subroutine */ int slaev2_(real *a, real *b, real *c__, real *rt1, real *
 | 
						|
	rt2, real *cs1, real *sn1)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
 | 
						|
    integer sgn1, sgn2;
 | 
						|
    real acmn, acmx;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix */
 | 
						|
/*     [  A   B  ] */
 | 
						|
/*     [  B   C  ]. */
 | 
						|
/*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */
 | 
						|
/*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */
 | 
						|
/*  eigenvector for RT1, giving the decomposition */
 | 
						|
 | 
						|
/*     [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ] */
 | 
						|
/*     [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ]. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  A       (input) REAL */
 | 
						|
/*          The (1,1) element of the 2-by-2 matrix. */
 | 
						|
 | 
						|
/*  B       (input) REAL */
 | 
						|
/*          The (1,2) element and the conjugate of the (2,1) element of */
 | 
						|
/*          the 2-by-2 matrix. */
 | 
						|
 | 
						|
/*  C       (input) REAL */
 | 
						|
/*          The (2,2) element of the 2-by-2 matrix. */
 | 
						|
 | 
						|
/*  RT1     (output) REAL */
 | 
						|
/*          The eigenvalue of larger absolute value. */
 | 
						|
 | 
						|
/*  RT2     (output) REAL */
 | 
						|
/*          The eigenvalue of smaller absolute value. */
 | 
						|
 | 
						|
/*  CS1     (output) REAL */
 | 
						|
/*  SN1     (output) REAL */
 | 
						|
/*          The vector (CS1, SN1) is a unit right eigenvector for RT1. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  RT1 is accurate to a few ulps barring over/underflow. */
 | 
						|
 | 
						|
/*  RT2 may be inaccurate if there is massive cancellation in the */
 | 
						|
/*  determinant A*C-B*B; higher precision or correctly rounded or */
 | 
						|
/*  correctly truncated arithmetic would be needed to compute RT2 */
 | 
						|
/*  accurately in all cases. */
 | 
						|
 | 
						|
/*  CS1 and SN1 are accurate to a few ulps barring over/underflow. */
 | 
						|
 | 
						|
/*  Overflow is possible only if RT1 is within a factor of 5 of overflow. */
 | 
						|
/*  Underflow is harmless if the input data is 0 or exceeds */
 | 
						|
/*     underflow_threshold / macheps. */
 | 
						|
 | 
						|
/* ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Compute the eigenvalues */
 | 
						|
 | 
						|
    sm = *a + *c__;
 | 
						|
    df = *a - *c__;
 | 
						|
    adf = dabs(df);
 | 
						|
    tb = *b + *b;
 | 
						|
    ab = dabs(tb);
 | 
						|
    if (dabs(*a) > dabs(*c__)) {
 | 
						|
	acmx = *a;
 | 
						|
	acmn = *c__;
 | 
						|
    } else {
 | 
						|
	acmx = *c__;
 | 
						|
	acmn = *a;
 | 
						|
    }
 | 
						|
    if (adf > ab) {
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__1 = ab / adf;
 | 
						|
	rt = adf * sqrt(r__1 * r__1 + 1.f);
 | 
						|
    } else if (adf < ab) {
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__1 = adf / ab;
 | 
						|
	rt = ab * sqrt(r__1 * r__1 + 1.f);
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Includes case AB=ADF=0 */
 | 
						|
 | 
						|
	rt = ab * sqrt(2.f);
 | 
						|
    }
 | 
						|
    if (sm < 0.f) {
 | 
						|
	*rt1 = (sm - rt) * .5f;
 | 
						|
	sgn1 = -1;
 | 
						|
 | 
						|
/*        Order of execution important. */
 | 
						|
/*        To get fully accurate smaller eigenvalue, */
 | 
						|
/*        next line needs to be executed in higher precision. */
 | 
						|
 | 
						|
	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
 | 
						|
    } else if (sm > 0.f) {
 | 
						|
	*rt1 = (sm + rt) * .5f;
 | 
						|
	sgn1 = 1;
 | 
						|
 | 
						|
/*        Order of execution important. */
 | 
						|
/*        To get fully accurate smaller eigenvalue, */
 | 
						|
/*        next line needs to be executed in higher precision. */
 | 
						|
 | 
						|
	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Includes case RT1 = RT2 = 0 */
 | 
						|
 | 
						|
	*rt1 = rt * .5f;
 | 
						|
	*rt2 = rt * -.5f;
 | 
						|
	sgn1 = 1;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute the eigenvector */
 | 
						|
 | 
						|
    if (df >= 0.f) {
 | 
						|
	cs = df + rt;
 | 
						|
	sgn2 = 1;
 | 
						|
    } else {
 | 
						|
	cs = df - rt;
 | 
						|
	sgn2 = -1;
 | 
						|
    }
 | 
						|
    acs = dabs(cs);
 | 
						|
    if (acs > ab) {
 | 
						|
	ct = -tb / cs;
 | 
						|
	*sn1 = 1.f / sqrt(ct * ct + 1.f);
 | 
						|
	*cs1 = ct * *sn1;
 | 
						|
    } else {
 | 
						|
	if (ab == 0.f) {
 | 
						|
	    *cs1 = 1.f;
 | 
						|
	    *sn1 = 0.f;
 | 
						|
	} else {
 | 
						|
	    tn = -cs / tb;
 | 
						|
	    *cs1 = 1.f / sqrt(tn * tn + 1.f);
 | 
						|
	    *sn1 = tn * *cs1;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (sgn1 == sgn2) {
 | 
						|
	tn = *cs1;
 | 
						|
	*cs1 = -(*sn1);
 | 
						|
	*sn1 = tn;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLAEV2 */
 | 
						|
 | 
						|
} /* slaev2_ */
 |