340 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			340 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__2 = 2;
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b10 = 1.f;
 | 
						|
static real c_b11 = 0.f;
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* Subroutine */ int slaed7_(integer *icompq, integer *n, integer *qsiz, 
 | 
						|
	integer *tlvls, integer *curlvl, integer *curpbm, real *d__, real *q, 
 | 
						|
	integer *ldq, integer *indxq, real *rho, integer *cutpnt, real *
 | 
						|
	qstore, integer *qptr, integer *prmptr, integer *perm, integer *
 | 
						|
	givptr, integer *givcol, real *givnum, real *work, integer *iwork, 
 | 
						|
	integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer q_dim1, q_offset, i__1, i__2;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    integer pow_ii(integer *, integer *);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr, indxc;
 | 
						|
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | 
						|
	    real *, integer *);
 | 
						|
    integer indxp;
 | 
						|
    extern /* Subroutine */ int slaed8_(integer *, integer *, integer *, 
 | 
						|
	    integer *, real *, real *, integer *, integer *, real *, integer *
 | 
						|
, real *, real *, real *, integer *, real *, integer *, integer *, 
 | 
						|
	     integer *, real *, integer *, integer *, integer *), slaed9_(
 | 
						|
	    integer *, integer *, integer *, integer *, real *, real *, 
 | 
						|
	    integer *, real *, real *, real *, real *, integer *, integer *), 
 | 
						|
	    slaeda_(integer *, integer *, integer *, integer *, integer *, 
 | 
						|
	    integer *, integer *, integer *, real *, real *, integer *, real *
 | 
						|
, real *, integer *);
 | 
						|
    integer idlmda;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
 | 
						|
	    integer *, integer *, real *, integer *, integer *, integer *);
 | 
						|
    integer coltyp;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  SLAED7 computes the updated eigensystem of a diagonal */
 | 
						|
/*  matrix after modification by a rank-one symmetric matrix. This */
 | 
						|
/*  routine is used only for the eigenproblem which requires all */
 | 
						|
/*  eigenvalues and optionally eigenvectors of a dense symmetric matrix */
 | 
						|
/*  that has been reduced to tridiagonal form.  SLAED1 handles */
 | 
						|
/*  the case in which all eigenvalues and eigenvectors of a symmetric */
 | 
						|
/*  tridiagonal matrix are desired. */
 | 
						|
 | 
						|
/*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */
 | 
						|
 | 
						|
/*     where Z = Q'u, u is a vector of length N with ones in the */
 | 
						|
/*     CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
 | 
						|
 | 
						|
/*     The eigenvectors of the original matrix are stored in Q, and the */
 | 
						|
/*     eigenvalues are in D.  The algorithm consists of three stages: */
 | 
						|
 | 
						|
/*        The first stage consists of deflating the size of the problem */
 | 
						|
/*        when there are multiple eigenvalues or if there is a zero in */
 | 
						|
/*        the Z vector.  For each such occurence the dimension of the */
 | 
						|
/*        secular equation problem is reduced by one.  This stage is */
 | 
						|
/*        performed by the routine SLAED8. */
 | 
						|
 | 
						|
/*        The second stage consists of calculating the updated */
 | 
						|
/*        eigenvalues. This is done by finding the roots of the secular */
 | 
						|
/*        equation via the routine SLAED4 (as called by SLAED9). */
 | 
						|
/*        This routine also calculates the eigenvectors of the current */
 | 
						|
/*        problem. */
 | 
						|
 | 
						|
/*        The final stage consists of computing the updated eigenvectors */
 | 
						|
/*        directly using the updated eigenvalues.  The eigenvectors for */
 | 
						|
/*        the current problem are multiplied with the eigenvectors from */
 | 
						|
/*        the overall problem. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  ICOMPQ  (input) INTEGER */
 | 
						|
/*          = 0:  Compute eigenvalues only. */
 | 
						|
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
 | 
						|
/*                also.  On entry, Q contains the orthogonal matrix used */
 | 
						|
/*                to reduce the original matrix to tridiagonal form. */
 | 
						|
 | 
						|
/*  N      (input) INTEGER */
 | 
						|
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 | 
						|
 | 
						|
/*  QSIZ   (input) INTEGER */
 | 
						|
/*         The dimension of the orthogonal matrix used to reduce */
 | 
						|
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */
 | 
						|
 | 
						|
/*  TLVLS  (input) INTEGER */
 | 
						|
/*         The total number of merging levels in the overall divide and */
 | 
						|
/*         conquer tree. */
 | 
						|
 | 
						|
/*  CURLVL (input) INTEGER */
 | 
						|
/*         The current level in the overall merge routine, */
 | 
						|
/*         0 <= CURLVL <= TLVLS. */
 | 
						|
 | 
						|
/*  CURPBM (input) INTEGER */
 | 
						|
/*         The current problem in the current level in the overall */
 | 
						|
/*         merge routine (counting from upper left to lower right). */
 | 
						|
 | 
						|
/*  D      (input/output) REAL array, dimension (N) */
 | 
						|
/*         On entry, the eigenvalues of the rank-1-perturbed matrix. */
 | 
						|
/*         On exit, the eigenvalues of the repaired matrix. */
 | 
						|
 | 
						|
/*  Q      (input/output) REAL array, dimension (LDQ, N) */
 | 
						|
/*         On entry, the eigenvectors of the rank-1-perturbed matrix. */
 | 
						|
/*         On exit, the eigenvectors of the repaired tridiagonal matrix. */
 | 
						|
 | 
						|
/*  LDQ    (input) INTEGER */
 | 
						|
/*         The leading dimension of the array Q.  LDQ >= max(1,N). */
 | 
						|
 | 
						|
/*  INDXQ  (output) INTEGER array, dimension (N) */
 | 
						|
/*         The permutation which will reintegrate the subproblem just */
 | 
						|
/*         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */
 | 
						|
/*         will be in ascending order. */
 | 
						|
 | 
						|
/*  RHO    (input) REAL */
 | 
						|
/*         The subdiagonal element used to create the rank-1 */
 | 
						|
/*         modification. */
 | 
						|
 | 
						|
/*  CUTPNT (input) INTEGER */
 | 
						|
/*         Contains the location of the last eigenvalue in the leading */
 | 
						|
/*         sub-matrix.  min(1,N) <= CUTPNT <= N. */
 | 
						|
 | 
						|
/*  QSTORE (input/output) REAL array, dimension (N**2+1) */
 | 
						|
/*         Stores eigenvectors of submatrices encountered during */
 | 
						|
/*         divide and conquer, packed together. QPTR points to */
 | 
						|
/*         beginning of the submatrices. */
 | 
						|
 | 
						|
/*  QPTR   (input/output) INTEGER array, dimension (N+2) */
 | 
						|
/*         List of indices pointing to beginning of submatrices stored */
 | 
						|
/*         in QSTORE. The submatrices are numbered starting at the */
 | 
						|
/*         bottom left of the divide and conquer tree, from left to */
 | 
						|
/*         right and bottom to top. */
 | 
						|
 | 
						|
/*  PRMPTR (input) INTEGER array, dimension (N lg N) */
 | 
						|
/*         Contains a list of pointers which indicate where in PERM a */
 | 
						|
/*         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) */
 | 
						|
/*         indicates the size of the permutation and also the size of */
 | 
						|
/*         the full, non-deflated problem. */
 | 
						|
 | 
						|
/*  PERM   (input) INTEGER array, dimension (N lg N) */
 | 
						|
/*         Contains the permutations (from deflation and sorting) to be */
 | 
						|
/*         applied to each eigenblock. */
 | 
						|
 | 
						|
/*  GIVPTR (input) INTEGER array, dimension (N lg N) */
 | 
						|
/*         Contains a list of pointers which indicate where in GIVCOL a */
 | 
						|
/*         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) */
 | 
						|
/*         indicates the number of Givens rotations. */
 | 
						|
 | 
						|
/*  GIVCOL (input) INTEGER array, dimension (2, N lg N) */
 | 
						|
/*         Each pair of numbers indicates a pair of columns to take place */
 | 
						|
/*         in a Givens rotation. */
 | 
						|
 | 
						|
/*  GIVNUM (input) REAL array, dimension (2, N lg N) */
 | 
						|
/*         Each number indicates the S value to be used in the */
 | 
						|
/*         corresponding Givens rotation. */
 | 
						|
 | 
						|
/*  WORK   (workspace) REAL array, dimension (3*N+QSIZ*N) */
 | 
						|
 | 
						|
/*  IWORK  (workspace) INTEGER array, dimension (4*N) */
 | 
						|
 | 
						|
/*  INFO   (output) INTEGER */
 | 
						|
/*          = 0:  successful exit. */
 | 
						|
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/*          > 0:  if INFO = 1, an eigenvalue did not converge */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Jeff Rutter, Computer Science Division, University of California */
 | 
						|
/*     at Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    q_dim1 = *ldq;
 | 
						|
    q_offset = 1 + q_dim1;
 | 
						|
    q -= q_offset;
 | 
						|
    --indxq;
 | 
						|
    --qstore;
 | 
						|
    --qptr;
 | 
						|
    --prmptr;
 | 
						|
    --perm;
 | 
						|
    --givptr;
 | 
						|
    givcol -= 3;
 | 
						|
    givnum -= 3;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
    if (*icompq < 0 || *icompq > 1) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*icompq == 1 && *qsiz < *n) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ldq < max(1,*n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
 | 
						|
	*info = -12;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SLAED7", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     The following values are for bookkeeping purposes only.  They are */
 | 
						|
/*     integer pointers which indicate the portion of the workspace */
 | 
						|
/*     used by a particular array in SLAED8 and SLAED9. */
 | 
						|
 | 
						|
    if (*icompq == 1) {
 | 
						|
	ldq2 = *qsiz;
 | 
						|
    } else {
 | 
						|
	ldq2 = *n;
 | 
						|
    }
 | 
						|
 | 
						|
    iz = 1;
 | 
						|
    idlmda = iz + *n;
 | 
						|
    iw = idlmda + *n;
 | 
						|
    iq2 = iw + *n;
 | 
						|
    is = iq2 + *n * ldq2;
 | 
						|
 | 
						|
    indx = 1;
 | 
						|
    indxc = indx + *n;
 | 
						|
    coltyp = indxc + *n;
 | 
						|
    indxp = coltyp + *n;
 | 
						|
 | 
						|
/*     Form the z-vector which consists of the last row of Q_1 and the */
 | 
						|
/*     first row of Q_2. */
 | 
						|
 | 
						|
    ptr = pow_ii(&c__2, tlvls) + 1;
 | 
						|
    i__1 = *curlvl - 1;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = *tlvls - i__;
 | 
						|
	ptr += pow_ii(&c__2, &i__2);
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
    curr = ptr + *curpbm;
 | 
						|
    slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
 | 
						|
	    givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz 
 | 
						|
	    + *n], info);
 | 
						|
 | 
						|
/*     When solving the final problem, we no longer need the stored data, */
 | 
						|
/*     so we will overwrite the data from this level onto the previously */
 | 
						|
/*     used storage space. */
 | 
						|
 | 
						|
    if (*curlvl == *tlvls) {
 | 
						|
	qptr[curr] = 1;
 | 
						|
	prmptr[curr] = 1;
 | 
						|
	givptr[curr] = 1;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Sort and Deflate eigenvalues. */
 | 
						|
 | 
						|
    slaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho, 
 | 
						|
	    cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &
 | 
						|
	    perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1)
 | 
						|
	     + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[
 | 
						|
	    indx], info);
 | 
						|
    prmptr[curr + 1] = prmptr[curr] + *n;
 | 
						|
    givptr[curr + 1] += givptr[curr];
 | 
						|
 | 
						|
/*     Solve Secular Equation. */
 | 
						|
 | 
						|
    if (k != 0) {
 | 
						|
	slaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda], 
 | 
						|
		&work[iw], &qstore[qptr[curr]], &k, info);
 | 
						|
	if (*info != 0) {
 | 
						|
	    goto L30;
 | 
						|
	}
 | 
						|
	if (*icompq == 1) {
 | 
						|
	    sgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[
 | 
						|
		    qptr[curr]], &k, &c_b11, &q[q_offset], ldq);
 | 
						|
	}
 | 
						|
/* Computing 2nd power */
 | 
						|
	i__1 = k;
 | 
						|
	qptr[curr + 1] = qptr[curr] + i__1 * i__1;
 | 
						|
 | 
						|
/*     Prepare the INDXQ sorting permutation. */
 | 
						|
 | 
						|
	n1 = k;
 | 
						|
	n2 = *n - k;
 | 
						|
	slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
 | 
						|
    } else {
 | 
						|
	qptr[curr + 1] = qptr[curr];
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    indxq[i__] = i__;
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
L30:
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLAED7 */
 | 
						|
 | 
						|
} /* slaed7_ */
 |