149 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* Subroutine */ int sgeqr2_(integer *m, integer *n, real *a, integer *lda, 
 | 
						|
	real *tau, real *work, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, k;
 | 
						|
    real aii;
 | 
						|
    extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, real *, integer *, real *), xerbla_(
 | 
						|
	    char *, integer *), slarfg_(integer *, real *, real *, 
 | 
						|
	    integer *, real *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  SGEQR2 computes a QR factorization of a real m by n matrix A: */
 | 
						|
/*  A = Q * R. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  M       (input) INTEGER */
 | 
						|
/*          The number of rows of the matrix A.  M >= 0. */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The number of columns of the matrix A.  N >= 0. */
 | 
						|
 | 
						|
/*  A       (input/output) REAL array, dimension (LDA,N) */
 | 
						|
/*          On entry, the m by n matrix A. */
 | 
						|
/*          On exit, the elements on and above the diagonal of the array */
 | 
						|
/*          contain the min(m,n) by n upper trapezoidal matrix R (R is */
 | 
						|
/*          upper triangular if m >= n); the elements below the diagonal, */
 | 
						|
/*          with the array TAU, represent the orthogonal matrix Q as a */
 | 
						|
/*          product of elementary reflectors (see Further Details). */
 | 
						|
 | 
						|
/*  LDA     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array A.  LDA >= max(1,M). */
 | 
						|
 | 
						|
/*  TAU     (output) REAL array, dimension (min(M,N)) */
 | 
						|
/*          The scalar factors of the elementary reflectors (see Further */
 | 
						|
/*          Details). */
 | 
						|
 | 
						|
/*  WORK    (workspace) REAL array, dimension (N) */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          = 0: successful exit */
 | 
						|
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  The matrix Q is represented as a product of elementary reflectors */
 | 
						|
 | 
						|
/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */
 | 
						|
 | 
						|
/*  Each H(i) has the form */
 | 
						|
 | 
						|
/*     H(i) = I - tau * v * v' */
 | 
						|
 | 
						|
/*  where tau is a real scalar, and v is a real vector with */
 | 
						|
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
 | 
						|
/*  and tau in TAU(i). */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    --tau;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (*m < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < max(1,*m)) {
 | 
						|
	*info = -4;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGEQR2", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    k = min(*m,*n);
 | 
						|
 | 
						|
    i__1 = k;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
/*        Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
 | 
						|
 | 
						|
	i__2 = *m - i__ + 1;
 | 
						|
/* Computing MIN */
 | 
						|
	i__3 = i__ + 1;
 | 
						|
	slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * a_dim1]
 | 
						|
, &c__1, &tau[i__]);
 | 
						|
	if (i__ < *n) {
 | 
						|
 | 
						|
/*           Apply H(i) to A(i:m,i+1:n) from the left */
 | 
						|
 | 
						|
	    aii = a[i__ + i__ * a_dim1];
 | 
						|
	    a[i__ + i__ * a_dim1] = 1.f;
 | 
						|
	    i__2 = *m - i__ + 1;
 | 
						|
	    i__3 = *n - i__;
 | 
						|
	    slarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
 | 
						|
		    i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
 | 
						|
	    a[i__ + i__ * a_dim1] = aii;
 | 
						|
	}
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SGEQR2 */
 | 
						|
 | 
						|
} /* sgeqr2_ */
 |