376 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer *
 | 
						|
	n, integer *k, real *alpha, real *a, integer *lda, real *b, integer *
 | 
						|
	ldb, real *beta, real *c__, integer *ldc)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 
 | 
						|
	    i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, l, info;
 | 
						|
    logical nota, notb;
 | 
						|
    real temp;
 | 
						|
    integer ncola;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer nrowa, nrowb;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *);
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  SGEMM  performs one of the matrix-matrix operations */
 | 
						|
 | 
						|
/*     C := alpha*op( A )*op( B ) + beta*C, */
 | 
						|
 | 
						|
/*  where  op( X ) is one of */
 | 
						|
 | 
						|
/*     op( X ) = X   or   op( X ) = X', */
 | 
						|
 | 
						|
/*  alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
 | 
						|
/*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/*  TRANSA - CHARACTER*1. */
 | 
						|
/*           On entry, TRANSA specifies the form of op( A ) to be used in */
 | 
						|
/*           the matrix multiplication as follows: */
 | 
						|
 | 
						|
/*              TRANSA = 'N' or 'n',  op( A ) = A. */
 | 
						|
 | 
						|
/*              TRANSA = 'T' or 't',  op( A ) = A'. */
 | 
						|
 | 
						|
/*              TRANSA = 'C' or 'c',  op( A ) = A'. */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  TRANSB - CHARACTER*1. */
 | 
						|
/*           On entry, TRANSB specifies the form of op( B ) to be used in */
 | 
						|
/*           the matrix multiplication as follows: */
 | 
						|
 | 
						|
/*              TRANSB = 'N' or 'n',  op( B ) = B. */
 | 
						|
 | 
						|
/*              TRANSB = 'T' or 't',  op( B ) = B'. */
 | 
						|
 | 
						|
/*              TRANSB = 'C' or 'c',  op( B ) = B'. */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  M      - INTEGER. */
 | 
						|
/*           On entry,  M  specifies  the number  of rows  of the  matrix */
 | 
						|
/*           op( A )  and of the  matrix  C.  M  must  be at least  zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  N      - INTEGER. */
 | 
						|
/*           On entry,  N  specifies the number  of columns of the matrix */
 | 
						|
/*           op( B ) and the number of columns of the matrix C. N must be */
 | 
						|
/*           at least zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  K      - INTEGER. */
 | 
						|
/*           On entry,  K  specifies  the number of columns of the matrix */
 | 
						|
/*           op( A ) and the number of rows of the matrix op( B ). K must */
 | 
						|
/*           be at least  zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  ALPHA  - REAL            . */
 | 
						|
/*           On entry, ALPHA specifies the scalar alpha. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is */
 | 
						|
/*           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise. */
 | 
						|
/*           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k */
 | 
						|
/*           part of the array  A  must contain the matrix  A,  otherwise */
 | 
						|
/*           the leading  k by m  part of the array  A  must contain  the */
 | 
						|
/*           matrix A. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  LDA    - INTEGER. */
 | 
						|
/*           On entry, LDA specifies the first dimension of A as declared */
 | 
						|
/*           in the calling (sub) program. When  TRANSA = 'N' or 'n' then */
 | 
						|
/*           LDA must be at least  max( 1, m ), otherwise  LDA must be at */
 | 
						|
/*           least  max( 1, k ). */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is */
 | 
						|
/*           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise. */
 | 
						|
/*           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n */
 | 
						|
/*           part of the array  B  must contain the matrix  B,  otherwise */
 | 
						|
/*           the leading  n by k  part of the array  B  must contain  the */
 | 
						|
/*           matrix B. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  LDB    - INTEGER. */
 | 
						|
/*           On entry, LDB specifies the first dimension of B as declared */
 | 
						|
/*           in the calling (sub) program. When  TRANSB = 'N' or 'n' then */
 | 
						|
/*           LDB must be at least  max( 1, k ), otherwise  LDB must be at */
 | 
						|
/*           least  max( 1, n ). */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  BETA   - REAL            . */
 | 
						|
/*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is */
 | 
						|
/*           supplied as zero then C need not be set on input. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  C      - REAL             array of DIMENSION ( LDC, n ). */
 | 
						|
/*           Before entry, the leading  m by n  part of the array  C must */
 | 
						|
/*           contain the matrix  C,  except when  beta  is zero, in which */
 | 
						|
/*           case C need not be set on entry. */
 | 
						|
/*           On exit, the array  C  is overwritten by the  m by n  matrix */
 | 
						|
/*           ( alpha*op( A )*op( B ) + beta*C ). */
 | 
						|
 | 
						|
/*  LDC    - INTEGER. */
 | 
						|
/*           On entry, LDC specifies the first dimension of C as declared */
 | 
						|
/*           in  the  calling  (sub)  program.   LDC  must  be  at  least */
 | 
						|
/*           max( 1, m ). */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
 | 
						|
/*  Level 3 Blas routine. */
 | 
						|
 | 
						|
/*  -- Written on 8-February-1989. */
 | 
						|
/*     Jack Dongarra, Argonne National Laboratory. */
 | 
						|
/*     Iain Duff, AERE Harwell. */
 | 
						|
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
 | 
						|
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */
 | 
						|
 | 
						|
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not */
 | 
						|
/*     transposed and set  NROWA, NCOLA and  NROWB  as the number of rows */
 | 
						|
/*     and  columns of  A  and the  number of  rows  of  B  respectively. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1;
 | 
						|
    b -= b_offset;
 | 
						|
    c_dim1 = *ldc;
 | 
						|
    c_offset = 1 + c_dim1;
 | 
						|
    c__ -= c_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    nota = lsame_(transa, "N");
 | 
						|
    notb = lsame_(transb, "N");
 | 
						|
    if (nota) {
 | 
						|
	nrowa = *m;
 | 
						|
	ncola = *k;
 | 
						|
    } else {
 | 
						|
	nrowa = *k;
 | 
						|
	ncola = *m;
 | 
						|
    }
 | 
						|
    if (notb) {
 | 
						|
	nrowb = *k;
 | 
						|
    } else {
 | 
						|
	nrowb = *n;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    info = 0;
 | 
						|
    if (! nota && ! lsame_(transa, "C") && ! lsame_(
 | 
						|
	    transa, "T")) {
 | 
						|
	info = 1;
 | 
						|
    } else if (! notb && ! lsame_(transb, "C") && ! 
 | 
						|
	    lsame_(transb, "T")) {
 | 
						|
	info = 2;
 | 
						|
    } else if (*m < 0) {
 | 
						|
	info = 3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	info = 4;
 | 
						|
    } else if (*k < 0) {
 | 
						|
	info = 5;
 | 
						|
    } else if (*lda < max(1,nrowa)) {
 | 
						|
	info = 8;
 | 
						|
    } else if (*ldb < max(1,nrowb)) {
 | 
						|
	info = 10;
 | 
						|
    } else if (*ldc < max(1,*m)) {
 | 
						|
	info = 13;
 | 
						|
    }
 | 
						|
    if (info != 0) {
 | 
						|
	xerbla_("SGEMM ", &info);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible. */
 | 
						|
 | 
						|
    if (*m == 0 || *n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     And if  alpha.eq.zero. */
 | 
						|
 | 
						|
    if (*alpha == 0.f) {
 | 
						|
	if (*beta == 0.f) {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = *m;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    c__[i__ + j * c_dim1] = 0.f;
 | 
						|
/* L10: */
 | 
						|
		}
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = *m;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 | 
						|
/* L30: */
 | 
						|
		}
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Start the operations. */
 | 
						|
 | 
						|
    if (notb) {
 | 
						|
	if (nota) {
 | 
						|
 | 
						|
/*           Form  C := alpha*A*B + beta*C. */
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		if (*beta == 0.f) {
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			c__[i__ + j * c_dim1] = 0.f;
 | 
						|
/* L50: */
 | 
						|
		    }
 | 
						|
		} else if (*beta != 1.f) {
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 | 
						|
/* L60: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		i__2 = *k;
 | 
						|
		for (l = 1; l <= i__2; ++l) {
 | 
						|
		    if (b[l + j * b_dim1] != 0.f) {
 | 
						|
			temp = *alpha * b[l + j * b_dim1];
 | 
						|
			i__3 = *m;
 | 
						|
			for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
 | 
						|
				    a_dim1];
 | 
						|
/* L70: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
/* L80: */
 | 
						|
		}
 | 
						|
/* L90: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Form  C := alpha*A'*B + beta*C */
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = *m;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    temp = 0.f;
 | 
						|
		    i__3 = *k;
 | 
						|
		    for (l = 1; l <= i__3; ++l) {
 | 
						|
			temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
 | 
						|
/* L100: */
 | 
						|
		    }
 | 
						|
		    if (*beta == 0.f) {
 | 
						|
			c__[i__ + j * c_dim1] = *alpha * temp;
 | 
						|
		    } else {
 | 
						|
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
 | 
						|
				i__ + j * c_dim1];
 | 
						|
		    }
 | 
						|
/* L110: */
 | 
						|
		}
 | 
						|
/* L120: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	if (nota) {
 | 
						|
 | 
						|
/*           Form  C := alpha*A*B' + beta*C */
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		if (*beta == 0.f) {
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			c__[i__ + j * c_dim1] = 0.f;
 | 
						|
/* L130: */
 | 
						|
		    }
 | 
						|
		} else if (*beta != 1.f) {
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
 | 
						|
/* L140: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		i__2 = *k;
 | 
						|
		for (l = 1; l <= i__2; ++l) {
 | 
						|
		    if (b[j + l * b_dim1] != 0.f) {
 | 
						|
			temp = *alpha * b[j + l * b_dim1];
 | 
						|
			i__3 = *m;
 | 
						|
			for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
 | 
						|
				    a_dim1];
 | 
						|
/* L150: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
/* L160: */
 | 
						|
		}
 | 
						|
/* L170: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Form  C := alpha*A'*B' + beta*C */
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = *m;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    temp = 0.f;
 | 
						|
		    i__3 = *k;
 | 
						|
		    for (l = 1; l <= i__3; ++l) {
 | 
						|
			temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
 | 
						|
/* L180: */
 | 
						|
		    }
 | 
						|
		    if (*beta == 0.f) {
 | 
						|
			c__[i__ + j * c_dim1] = *alpha * temp;
 | 
						|
		    } else {
 | 
						|
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
 | 
						|
				i__ + j * c_dim1];
 | 
						|
		    }
 | 
						|
/* L190: */
 | 
						|
		}
 | 
						|
/* L200: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SGEMM . */
 | 
						|
 | 
						|
} /* sgemm_ */
 |