441 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			441 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Subroutine */ int dtrmm_(char *side, char *uplo, char *transa, char *diag, 
 | 
						|
	integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
 | 
						|
	lda, doublereal *b, integer *ldb)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, k, info;
 | 
						|
    doublereal temp;
 | 
						|
    logical lside;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer nrowa;
 | 
						|
    logical upper;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *);
 | 
						|
    logical nounit;
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DTRMM  performs one of the matrix-matrix operations */
 | 
						|
 | 
						|
/*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ), */
 | 
						|
 | 
						|
/*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or */
 | 
						|
/*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */
 | 
						|
 | 
						|
/*     op( A ) = A   or   op( A ) = A'. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/*  SIDE   - CHARACTER*1. */
 | 
						|
/*           On entry,  SIDE specifies whether  op( A ) multiplies B from */
 | 
						|
/*           the left or right as follows: */
 | 
						|
 | 
						|
/*              SIDE = 'L' or 'l'   B := alpha*op( A )*B. */
 | 
						|
 | 
						|
/*              SIDE = 'R' or 'r'   B := alpha*B*op( A ). */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  UPLO   - CHARACTER*1. */
 | 
						|
/*           On entry, UPLO specifies whether the matrix A is an upper or */
 | 
						|
/*           lower triangular matrix as follows: */
 | 
						|
 | 
						|
/*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */
 | 
						|
 | 
						|
/*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  TRANSA - CHARACTER*1. */
 | 
						|
/*           On entry, TRANSA specifies the form of op( A ) to be used in */
 | 
						|
/*           the matrix multiplication as follows: */
 | 
						|
 | 
						|
/*              TRANSA = 'N' or 'n'   op( A ) = A. */
 | 
						|
 | 
						|
/*              TRANSA = 'T' or 't'   op( A ) = A'. */
 | 
						|
 | 
						|
/*              TRANSA = 'C' or 'c'   op( A ) = A'. */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  DIAG   - CHARACTER*1. */
 | 
						|
/*           On entry, DIAG specifies whether or not A is unit triangular */
 | 
						|
/*           as follows: */
 | 
						|
 | 
						|
/*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
 | 
						|
 | 
						|
/*              DIAG = 'N' or 'n'   A is not assumed to be unit */
 | 
						|
/*                                  triangular. */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  M      - INTEGER. */
 | 
						|
/*           On entry, M specifies the number of rows of B. M must be at */
 | 
						|
/*           least zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  N      - INTEGER. */
 | 
						|
/*           On entry, N specifies the number of columns of B.  N must be */
 | 
						|
/*           at least zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  ALPHA  - DOUBLE PRECISION. */
 | 
						|
/*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
 | 
						|
/*           zero then  A is not referenced and  B need not be set before */
 | 
						|
/*           entry. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
 | 
						|
/*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. */
 | 
						|
/*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k */
 | 
						|
/*           upper triangular part of the array  A must contain the upper */
 | 
						|
/*           triangular matrix  and the strictly lower triangular part of */
 | 
						|
/*           A is not referenced. */
 | 
						|
/*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k */
 | 
						|
/*           lower triangular part of the array  A must contain the lower */
 | 
						|
/*           triangular matrix  and the strictly upper triangular part of */
 | 
						|
/*           A is not referenced. */
 | 
						|
/*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of */
 | 
						|
/*           A  are not referenced either,  but are assumed to be  unity. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  LDA    - INTEGER. */
 | 
						|
/*           On entry, LDA specifies the first dimension of A as declared */
 | 
						|
/*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
 | 
						|
/*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' */
 | 
						|
/*           then LDA must be at least max( 1, n ). */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
 | 
						|
/*           Before entry,  the leading  m by n part of the array  B must */
 | 
						|
/*           contain the matrix  B,  and  on exit  is overwritten  by the */
 | 
						|
/*           transformed matrix. */
 | 
						|
 | 
						|
/*  LDB    - INTEGER. */
 | 
						|
/*           On entry, LDB specifies the first dimension of B as declared */
 | 
						|
/*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
 | 
						|
/*           max( 1, m ). */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
 | 
						|
/*  Level 3 Blas routine. */
 | 
						|
 | 
						|
/*  -- Written on 8-February-1989. */
 | 
						|
/*     Jack Dongarra, Argonne National Laboratory. */
 | 
						|
/*     Iain Duff, AERE Harwell. */
 | 
						|
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
 | 
						|
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */
 | 
						|
 | 
						|
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1;
 | 
						|
    b -= b_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    lside = lsame_(side, "L");
 | 
						|
    if (lside) {
 | 
						|
	nrowa = *m;
 | 
						|
    } else {
 | 
						|
	nrowa = *n;
 | 
						|
    }
 | 
						|
    nounit = lsame_(diag, "N");
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
 | 
						|
    info = 0;
 | 
						|
    if (! lside && ! lsame_(side, "R")) {
 | 
						|
	info = 1;
 | 
						|
    } else if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	info = 2;
 | 
						|
    } else if (! lsame_(transa, "N") && ! lsame_(transa, 
 | 
						|
	     "T") && ! lsame_(transa, "C")) {
 | 
						|
	info = 3;
 | 
						|
    } else if (! lsame_(diag, "U") && ! lsame_(diag, 
 | 
						|
	    "N")) {
 | 
						|
	info = 4;
 | 
						|
    } else if (*m < 0) {
 | 
						|
	info = 5;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	info = 6;
 | 
						|
    } else if (*lda < max(1,nrowa)) {
 | 
						|
	info = 9;
 | 
						|
    } else if (*ldb < max(1,*m)) {
 | 
						|
	info = 11;
 | 
						|
    }
 | 
						|
    if (info != 0) {
 | 
						|
	xerbla_("DTRMM ", &info);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible. */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     And when  alpha.eq.zero. */
 | 
						|
 | 
						|
    if (*alpha == 0.) {
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *m;
 | 
						|
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		b[i__ + j * b_dim1] = 0.;
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Start the operations. */
 | 
						|
 | 
						|
    if (lside) {
 | 
						|
	if (lsame_(transa, "N")) {
 | 
						|
 | 
						|
/*           Form  B := alpha*A*B. */
 | 
						|
 | 
						|
	    if (upper) {
 | 
						|
		i__1 = *n;
 | 
						|
		for (j = 1; j <= i__1; ++j) {
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (k = 1; k <= i__2; ++k) {
 | 
						|
			if (b[k + j * b_dim1] != 0.) {
 | 
						|
			    temp = *alpha * b[k + j * b_dim1];
 | 
						|
			    i__3 = k - 1;
 | 
						|
			    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
				b[i__ + j * b_dim1] += temp * a[i__ + k * 
 | 
						|
					a_dim1];
 | 
						|
/* L30: */
 | 
						|
			    }
 | 
						|
			    if (nounit) {
 | 
						|
				temp *= a[k + k * a_dim1];
 | 
						|
			    }
 | 
						|
			    b[k + j * b_dim1] = temp;
 | 
						|
			}
 | 
						|
/* L40: */
 | 
						|
		    }
 | 
						|
/* L50: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		i__1 = *n;
 | 
						|
		for (j = 1; j <= i__1; ++j) {
 | 
						|
		    for (k = *m; k >= 1; --k) {
 | 
						|
			if (b[k + j * b_dim1] != 0.) {
 | 
						|
			    temp = *alpha * b[k + j * b_dim1];
 | 
						|
			    b[k + j * b_dim1] = temp;
 | 
						|
			    if (nounit) {
 | 
						|
				b[k + j * b_dim1] *= a[k + k * a_dim1];
 | 
						|
			    }
 | 
						|
			    i__2 = *m;
 | 
						|
			    for (i__ = k + 1; i__ <= i__2; ++i__) {
 | 
						|
				b[i__ + j * b_dim1] += temp * a[i__ + k * 
 | 
						|
					a_dim1];
 | 
						|
/* L60: */
 | 
						|
			    }
 | 
						|
			}
 | 
						|
/* L70: */
 | 
						|
		    }
 | 
						|
/* L80: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Form  B := alpha*A'*B. */
 | 
						|
 | 
						|
	    if (upper) {
 | 
						|
		i__1 = *n;
 | 
						|
		for (j = 1; j <= i__1; ++j) {
 | 
						|
		    for (i__ = *m; i__ >= 1; --i__) {
 | 
						|
			temp = b[i__ + j * b_dim1];
 | 
						|
			if (nounit) {
 | 
						|
			    temp *= a[i__ + i__ * a_dim1];
 | 
						|
			}
 | 
						|
			i__2 = i__ - 1;
 | 
						|
			for (k = 1; k <= i__2; ++k) {
 | 
						|
			    temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
 | 
						|
/* L90: */
 | 
						|
			}
 | 
						|
			b[i__ + j * b_dim1] = *alpha * temp;
 | 
						|
/* L100: */
 | 
						|
		    }
 | 
						|
/* L110: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		i__1 = *n;
 | 
						|
		for (j = 1; j <= i__1; ++j) {
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			temp = b[i__ + j * b_dim1];
 | 
						|
			if (nounit) {
 | 
						|
			    temp *= a[i__ + i__ * a_dim1];
 | 
						|
			}
 | 
						|
			i__3 = *m;
 | 
						|
			for (k = i__ + 1; k <= i__3; ++k) {
 | 
						|
			    temp += a[k + i__ * a_dim1] * b[k + j * b_dim1];
 | 
						|
/* L120: */
 | 
						|
			}
 | 
						|
			b[i__ + j * b_dim1] = *alpha * temp;
 | 
						|
/* L130: */
 | 
						|
		    }
 | 
						|
/* L140: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	if (lsame_(transa, "N")) {
 | 
						|
 | 
						|
/*           Form  B := alpha*B*A. */
 | 
						|
 | 
						|
	    if (upper) {
 | 
						|
		for (j = *n; j >= 1; --j) {
 | 
						|
		    temp = *alpha;
 | 
						|
		    if (nounit) {
 | 
						|
			temp *= a[j + j * a_dim1];
 | 
						|
		    }
 | 
						|
		    i__1 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
			b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
 | 
						|
/* L150: */
 | 
						|
		    }
 | 
						|
		    i__1 = j - 1;
 | 
						|
		    for (k = 1; k <= i__1; ++k) {
 | 
						|
			if (a[k + j * a_dim1] != 0.) {
 | 
						|
			    temp = *alpha * a[k + j * a_dim1];
 | 
						|
			    i__2 = *m;
 | 
						|
			    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
				b[i__ + j * b_dim1] += temp * b[i__ + k * 
 | 
						|
					b_dim1];
 | 
						|
/* L160: */
 | 
						|
			    }
 | 
						|
			}
 | 
						|
/* L170: */
 | 
						|
		    }
 | 
						|
/* L180: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		i__1 = *n;
 | 
						|
		for (j = 1; j <= i__1; ++j) {
 | 
						|
		    temp = *alpha;
 | 
						|
		    if (nounit) {
 | 
						|
			temp *= a[j + j * a_dim1];
 | 
						|
		    }
 | 
						|
		    i__2 = *m;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
 | 
						|
/* L190: */
 | 
						|
		    }
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (k = j + 1; k <= i__2; ++k) {
 | 
						|
			if (a[k + j * a_dim1] != 0.) {
 | 
						|
			    temp = *alpha * a[k + j * a_dim1];
 | 
						|
			    i__3 = *m;
 | 
						|
			    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
				b[i__ + j * b_dim1] += temp * b[i__ + k * 
 | 
						|
					b_dim1];
 | 
						|
/* L200: */
 | 
						|
			    }
 | 
						|
			}
 | 
						|
/* L210: */
 | 
						|
		    }
 | 
						|
/* L220: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Form  B := alpha*B*A'. */
 | 
						|
 | 
						|
	    if (upper) {
 | 
						|
		i__1 = *n;
 | 
						|
		for (k = 1; k <= i__1; ++k) {
 | 
						|
		    i__2 = k - 1;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			if (a[j + k * a_dim1] != 0.) {
 | 
						|
			    temp = *alpha * a[j + k * a_dim1];
 | 
						|
			    i__3 = *m;
 | 
						|
			    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
				b[i__ + j * b_dim1] += temp * b[i__ + k * 
 | 
						|
					b_dim1];
 | 
						|
/* L230: */
 | 
						|
			    }
 | 
						|
			}
 | 
						|
/* L240: */
 | 
						|
		    }
 | 
						|
		    temp = *alpha;
 | 
						|
		    if (nounit) {
 | 
						|
			temp *= a[k + k * a_dim1];
 | 
						|
		    }
 | 
						|
		    if (temp != 1.) {
 | 
						|
			i__2 = *m;
 | 
						|
			for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
 | 
						|
/* L250: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
/* L260: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		for (k = *n; k >= 1; --k) {
 | 
						|
		    i__1 = *n;
 | 
						|
		    for (j = k + 1; j <= i__1; ++j) {
 | 
						|
			if (a[j + k * a_dim1] != 0.) {
 | 
						|
			    temp = *alpha * a[j + k * a_dim1];
 | 
						|
			    i__2 = *m;
 | 
						|
			    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
				b[i__ + j * b_dim1] += temp * b[i__ + k * 
 | 
						|
					b_dim1];
 | 
						|
/* L270: */
 | 
						|
			    }
 | 
						|
			}
 | 
						|
/* L280: */
 | 
						|
		    }
 | 
						|
		    temp = *alpha;
 | 
						|
		    if (nounit) {
 | 
						|
			temp *= a[k + k * a_dim1];
 | 
						|
		    }
 | 
						|
		    if (temp != 1.) {
 | 
						|
			i__1 = *m;
 | 
						|
			for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
 | 
						|
/* L290: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
/* L300: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DTRMM . */
 | 
						|
 | 
						|
} /* dtrmm_ */
 |