440 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			440 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__2 = 2;
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* Subroutine */ int dstein_(integer *n, doublereal *d__, doublereal *e, 
 | 
						|
	integer *m, doublereal *w, integer *iblock, integer *isplit, 
 | 
						|
	doublereal *z__, integer *ldz, doublereal *work, integer *iwork, 
 | 
						|
	integer *ifail, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer z_dim1, z_offset, i__1, i__2, i__3;
 | 
						|
    doublereal d__1, d__2, d__3, d__4, d__5;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, b1, j1, bn;
 | 
						|
    doublereal xj, scl, eps, sep, nrm, tol;
 | 
						|
    integer its;
 | 
						|
    doublereal xjm, ztr, eps1;
 | 
						|
    integer jblk, nblk;
 | 
						|
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    integer jmax;
 | 
						|
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | 
						|
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    integer iseed[4], gpind, iinfo;
 | 
						|
    extern doublereal dasum_(integer *, doublereal *, integer *);
 | 
						|
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *);
 | 
						|
    doublereal ortol;
 | 
						|
    integer indrv1, indrv2, indrv3, indrv4, indrv5;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    extern /* Subroutine */ int dlagtf_(integer *, doublereal *, doublereal *, 
 | 
						|
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
 | 
						|
, integer *);
 | 
						|
    extern integer idamax_(integer *, doublereal *, integer *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *), dlagts_(
 | 
						|
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
 | 
						|
    integer nrmchk;
 | 
						|
    extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *, 
 | 
						|
	    doublereal *);
 | 
						|
    integer blksiz;
 | 
						|
    doublereal onenrm, dtpcrt, pertol;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DSTEIN computes the eigenvectors of a real symmetric tridiagonal */
 | 
						|
/*  matrix T corresponding to specified eigenvalues, using inverse */
 | 
						|
/*  iteration. */
 | 
						|
 | 
						|
/*  The maximum number of iterations allowed for each eigenvector is */
 | 
						|
/*  specified by an internal parameter MAXITS (currently set to 5). */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix.  N >= 0. */
 | 
						|
 | 
						|
/*  D       (input) DOUBLE PRECISION array, dimension (N) */
 | 
						|
/*          The n diagonal elements of the tridiagonal matrix T. */
 | 
						|
 | 
						|
/*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/*          The (n-1) subdiagonal elements of the tridiagonal matrix */
 | 
						|
/*          T, in elements 1 to N-1. */
 | 
						|
 | 
						|
/*  M       (input) INTEGER */
 | 
						|
/*          The number of eigenvectors to be found.  0 <= M <= N. */
 | 
						|
 | 
						|
/*  W       (input) DOUBLE PRECISION array, dimension (N) */
 | 
						|
/*          The first M elements of W contain the eigenvalues for */
 | 
						|
/*          which eigenvectors are to be computed.  The eigenvalues */
 | 
						|
/*          should be grouped by split-off block and ordered from */
 | 
						|
/*          smallest to largest within the block.  ( The output array */
 | 
						|
/*          W from DSTEBZ with ORDER = 'B' is expected here. ) */
 | 
						|
 | 
						|
/*  IBLOCK  (input) INTEGER array, dimension (N) */
 | 
						|
/*          The submatrix indices associated with the corresponding */
 | 
						|
/*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
 | 
						|
/*          the first submatrix from the top, =2 if W(i) belongs to */
 | 
						|
/*          the second submatrix, etc.  ( The output array IBLOCK */
 | 
						|
/*          from DSTEBZ is expected here. ) */
 | 
						|
 | 
						|
/*  ISPLIT  (input) INTEGER array, dimension (N) */
 | 
						|
/*          The splitting points, at which T breaks up into submatrices. */
 | 
						|
/*          The first submatrix consists of rows/columns 1 to */
 | 
						|
/*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
 | 
						|
/*          through ISPLIT( 2 ), etc. */
 | 
						|
/*          ( The output array ISPLIT from DSTEBZ is expected here. ) */
 | 
						|
 | 
						|
/*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, M) */
 | 
						|
/*          The computed eigenvectors.  The eigenvector associated */
 | 
						|
/*          with the eigenvalue W(i) is stored in the i-th column of */
 | 
						|
/*          Z.  Any vector which fails to converge is set to its current */
 | 
						|
/*          iterate after MAXITS iterations. */
 | 
						|
 | 
						|
/*  LDZ     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array Z.  LDZ >= max(1,N). */
 | 
						|
 | 
						|
/*  WORK    (workspace) DOUBLE PRECISION array, dimension (5*N) */
 | 
						|
 | 
						|
/*  IWORK   (workspace) INTEGER array, dimension (N) */
 | 
						|
 | 
						|
/*  IFAIL   (output) INTEGER array, dimension (M) */
 | 
						|
/*          On normal exit, all elements of IFAIL are zero. */
 | 
						|
/*          If one or more eigenvectors fail to converge after */
 | 
						|
/*          MAXITS iterations, then their indices are stored in */
 | 
						|
/*          array IFAIL. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          = 0: successful exit. */
 | 
						|
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/*          > 0: if INFO = i, then i eigenvectors failed to converge */
 | 
						|
/*               in MAXITS iterations.  Their indices are stored in */
 | 
						|
/*               array IFAIL. */
 | 
						|
 | 
						|
/*  Internal Parameters */
 | 
						|
/*  =================== */
 | 
						|
 | 
						|
/*  MAXITS  INTEGER, default = 5 */
 | 
						|
/*          The maximum number of iterations performed. */
 | 
						|
 | 
						|
/*  EXTRA   INTEGER, default = 2 */
 | 
						|
/*          The number of iterations performed after norm growth */
 | 
						|
/*          criterion is satisfied, should be at least 1. */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Arrays .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    --w;
 | 
						|
    --iblock;
 | 
						|
    --isplit;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
    --ifail;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    i__1 = *m;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	ifail[i__] = 0;
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
 | 
						|
    if (*n < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*m < 0 || *m > *n) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ldz < max(1,*n)) {
 | 
						|
	*info = -9;
 | 
						|
    } else {
 | 
						|
	i__1 = *m;
 | 
						|
	for (j = 2; j <= i__1; ++j) {
 | 
						|
	    if (iblock[j] < iblock[j - 1]) {
 | 
						|
		*info = -6;
 | 
						|
		goto L30;
 | 
						|
	    }
 | 
						|
	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
 | 
						|
		*info = -5;
 | 
						|
		goto L30;
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
L30:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DSTEIN", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0 || *m == 0) {
 | 
						|
	return 0;
 | 
						|
    } else if (*n == 1) {
 | 
						|
	z__[z_dim1 + 1] = 1.;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants. */
 | 
						|
 | 
						|
    eps = dlamch_("Precision");
 | 
						|
 | 
						|
/*     Initialize seed for random number generator DLARNV. */
 | 
						|
 | 
						|
    for (i__ = 1; i__ <= 4; ++i__) {
 | 
						|
	iseed[i__ - 1] = 1;
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize pointers. */
 | 
						|
 | 
						|
    indrv1 = 0;
 | 
						|
    indrv2 = indrv1 + *n;
 | 
						|
    indrv3 = indrv2 + *n;
 | 
						|
    indrv4 = indrv3 + *n;
 | 
						|
    indrv5 = indrv4 + *n;
 | 
						|
 | 
						|
/*     Compute eigenvectors of matrix blocks. */
 | 
						|
 | 
						|
    j1 = 1;
 | 
						|
    i__1 = iblock[*m];
 | 
						|
    for (nblk = 1; nblk <= i__1; ++nblk) {
 | 
						|
 | 
						|
/*        Find starting and ending indices of block nblk. */
 | 
						|
 | 
						|
	if (nblk == 1) {
 | 
						|
	    b1 = 1;
 | 
						|
	} else {
 | 
						|
	    b1 = isplit[nblk - 1] + 1;
 | 
						|
	}
 | 
						|
	bn = isplit[nblk];
 | 
						|
	blksiz = bn - b1 + 1;
 | 
						|
	if (blksiz == 1) {
 | 
						|
	    goto L60;
 | 
						|
	}
 | 
						|
	gpind = b1;
 | 
						|
 | 
						|
/*        Compute reorthogonalization criterion and stopping criterion. */
 | 
						|
 | 
						|
	onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));
 | 
						|
/* Computing MAX */
 | 
						|
	d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],
 | 
						|
		 abs(d__2));
 | 
						|
	onenrm = max(d__3,d__4);
 | 
						|
	i__2 = bn - 1;
 | 
						|
	for (i__ = b1 + 1; i__ <= i__2; ++i__) {
 | 
						|
/* Computing MAX */
 | 
						|
	    d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
 | 
						|
		    i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));
 | 
						|
	    onenrm = max(d__4,d__5);
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
	ortol = onenrm * .001;
 | 
						|
 | 
						|
	dtpcrt = sqrt(.1 / blksiz);
 | 
						|
 | 
						|
/*        Loop through eigenvalues of block nblk. */
 | 
						|
 | 
						|
L60:
 | 
						|
	jblk = 0;
 | 
						|
	i__2 = *m;
 | 
						|
	for (j = j1; j <= i__2; ++j) {
 | 
						|
	    if (iblock[j] != nblk) {
 | 
						|
		j1 = j;
 | 
						|
		goto L160;
 | 
						|
	    }
 | 
						|
	    ++jblk;
 | 
						|
	    xj = w[j];
 | 
						|
 | 
						|
/*           Skip all the work if the block size is one. */
 | 
						|
 | 
						|
	    if (blksiz == 1) {
 | 
						|
		work[indrv1 + 1] = 1.;
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           If eigenvalues j and j-1 are too close, add a relatively */
 | 
						|
/*           small perturbation. */
 | 
						|
 | 
						|
	    if (jblk > 1) {
 | 
						|
		eps1 = (d__1 = eps * xj, abs(d__1));
 | 
						|
		pertol = eps1 * 10.;
 | 
						|
		sep = xj - xjm;
 | 
						|
		if (sep < pertol) {
 | 
						|
		    xj = xjm + pertol;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    its = 0;
 | 
						|
	    nrmchk = 0;
 | 
						|
 | 
						|
/*           Get random starting vector. */
 | 
						|
 | 
						|
	    dlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
 | 
						|
 | 
						|
/*           Copy the matrix T so it won't be destroyed in factorization. */
 | 
						|
 | 
						|
	    dcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
 | 
						|
	    i__3 = blksiz - 1;
 | 
						|
	    dcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
 | 
						|
	    i__3 = blksiz - 1;
 | 
						|
	    dcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
 | 
						|
 | 
						|
/*           Compute LU factors with partial pivoting  ( PT = LU ) */
 | 
						|
 | 
						|
	    tol = 0.;
 | 
						|
	    dlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
 | 
						|
		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
 | 
						|
 | 
						|
/*           Update iteration count. */
 | 
						|
 | 
						|
L70:
 | 
						|
	    ++its;
 | 
						|
	    if (its > 5) {
 | 
						|
		goto L100;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Normalize and scale the righthand side vector Pb. */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
	    d__2 = eps, d__3 = (d__1 = work[indrv4 + blksiz], abs(d__1));
 | 
						|
	    scl = blksiz * onenrm * max(d__2,d__3) / dasum_(&blksiz, &work[
 | 
						|
		    indrv1 + 1], &c__1);
 | 
						|
	    dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
 | 
						|
 | 
						|
/*           Solve the system LU = Pb. */
 | 
						|
 | 
						|
	    dlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
 | 
						|
		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
 | 
						|
		    indrv1 + 1], &tol, &iinfo);
 | 
						|
 | 
						|
/*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
 | 
						|
/*           close enough. */
 | 
						|
 | 
						|
	    if (jblk == 1) {
 | 
						|
		goto L90;
 | 
						|
	    }
 | 
						|
	    if ((d__1 = xj - xjm, abs(d__1)) > ortol) {
 | 
						|
		gpind = j;
 | 
						|
	    }
 | 
						|
	    if (gpind != j) {
 | 
						|
		i__3 = j - 1;
 | 
						|
		for (i__ = gpind; i__ <= i__3; ++i__) {
 | 
						|
		    ztr = -ddot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 + 
 | 
						|
			    i__ * z_dim1], &c__1);
 | 
						|
		    daxpy_(&blksiz, &ztr, &z__[b1 + i__ * z_dim1], &c__1, &
 | 
						|
			    work[indrv1 + 1], &c__1);
 | 
						|
/* L80: */
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Check the infinity norm of the iterate. */
 | 
						|
 | 
						|
L90:
 | 
						|
	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
	    nrm = (d__1 = work[indrv1 + jmax], abs(d__1));
 | 
						|
 | 
						|
/*           Continue for additional iterations after norm reaches */
 | 
						|
/*           stopping criterion. */
 | 
						|
 | 
						|
	    if (nrm < dtpcrt) {
 | 
						|
		goto L70;
 | 
						|
	    }
 | 
						|
	    ++nrmchk;
 | 
						|
	    if (nrmchk < 3) {
 | 
						|
		goto L70;
 | 
						|
	    }
 | 
						|
 | 
						|
	    goto L110;
 | 
						|
 | 
						|
/*           If stopping criterion was not satisfied, update info and */
 | 
						|
/*           store eigenvector number in array ifail. */
 | 
						|
 | 
						|
L100:
 | 
						|
	    ++(*info);
 | 
						|
	    ifail[*info] = j;
 | 
						|
 | 
						|
/*           Accept iterate as jth eigenvector. */
 | 
						|
 | 
						|
L110:
 | 
						|
	    scl = 1. / dnrm2_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
	    jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
 | 
						|
	    if (work[indrv1 + jmax] < 0.) {
 | 
						|
		scl = -scl;
 | 
						|
	    }
 | 
						|
	    dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
 | 
						|
L120:
 | 
						|
	    i__3 = *n;
 | 
						|
	    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
		z__[i__ + j * z_dim1] = 0.;
 | 
						|
/* L130: */
 | 
						|
	    }
 | 
						|
	    i__3 = blksiz;
 | 
						|
	    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
		z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Save the shift to check eigenvalue spacing at next */
 | 
						|
/*           iteration. */
 | 
						|
 | 
						|
	    xjm = xj;
 | 
						|
 | 
						|
/* L150: */
 | 
						|
	}
 | 
						|
L160:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DSTEIN */
 | 
						|
 | 
						|
} /* dstein_ */
 |