343 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			343 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static doublereal c_b5 = -1.;
 | 
						|
static doublereal c_b6 = 1.;
 | 
						|
static integer c__1 = 1;
 | 
						|
static doublereal c_b16 = 0.;
 | 
						|
 | 
						|
/* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal *
 | 
						|
	a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, 
 | 
						|
	integer *ldw)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, iw;
 | 
						|
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    doublereal alpha;
 | 
						|
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, doublereal *, integer *), daxpy_(integer *, 
 | 
						|
	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
 | 
						|
	    dsymv_(char *, integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	     doublereal *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DLATRD reduces NB rows and columns of a real symmetric matrix A to */
 | 
						|
/*  symmetric tridiagonal form by an orthogonal similarity */
 | 
						|
/*  transformation Q' * A * Q, and returns the matrices V and W which are */
 | 
						|
/*  needed to apply the transformation to the unreduced part of A. */
 | 
						|
 | 
						|
/*  If UPLO = 'U', DLATRD reduces the last NB rows and columns of a */
 | 
						|
/*  matrix, of which the upper triangle is supplied; */
 | 
						|
/*  if UPLO = 'L', DLATRD reduces the first NB rows and columns of a */
 | 
						|
/*  matrix, of which the lower triangle is supplied. */
 | 
						|
 | 
						|
/*  This is an auxiliary routine called by DSYTRD. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  UPLO    (input) CHARACTER*1 */
 | 
						|
/*          Specifies whether the upper or lower triangular part of the */
 | 
						|
/*          symmetric matrix A is stored: */
 | 
						|
/*          = 'U': Upper triangular */
 | 
						|
/*          = 'L': Lower triangular */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix A. */
 | 
						|
 | 
						|
/*  NB      (input) INTEGER */
 | 
						|
/*          The number of rows and columns to be reduced. */
 | 
						|
 | 
						|
/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 | 
						|
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | 
						|
/*          n-by-n upper triangular part of A contains the upper */
 | 
						|
/*          triangular part of the matrix A, and the strictly lower */
 | 
						|
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
 | 
						|
/*          leading n-by-n lower triangular part of A contains the lower */
 | 
						|
/*          triangular part of the matrix A, and the strictly upper */
 | 
						|
/*          triangular part of A is not referenced. */
 | 
						|
/*          On exit: */
 | 
						|
/*          if UPLO = 'U', the last NB columns have been reduced to */
 | 
						|
/*            tridiagonal form, with the diagonal elements overwriting */
 | 
						|
/*            the diagonal elements of A; the elements above the diagonal */
 | 
						|
/*            with the array TAU, represent the orthogonal matrix Q as a */
 | 
						|
/*            product of elementary reflectors; */
 | 
						|
/*          if UPLO = 'L', the first NB columns have been reduced to */
 | 
						|
/*            tridiagonal form, with the diagonal elements overwriting */
 | 
						|
/*            the diagonal elements of A; the elements below the diagonal */
 | 
						|
/*            with the array TAU, represent the  orthogonal matrix Q as a */
 | 
						|
/*            product of elementary reflectors. */
 | 
						|
/*          See Further Details. */
 | 
						|
 | 
						|
/*  LDA     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array A.  LDA >= (1,N). */
 | 
						|
 | 
						|
/*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
 | 
						|
/*          elements of the last NB columns of the reduced matrix; */
 | 
						|
/*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
 | 
						|
/*          the first NB columns of the reduced matrix. */
 | 
						|
 | 
						|
/*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/*          The scalar factors of the elementary reflectors, stored in */
 | 
						|
/*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
 | 
						|
/*          See Further Details. */
 | 
						|
 | 
						|
/*  W       (output) DOUBLE PRECISION array, dimension (LDW,NB) */
 | 
						|
/*          The n-by-nb matrix W required to update the unreduced part */
 | 
						|
/*          of A. */
 | 
						|
 | 
						|
/*  LDW     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array W. LDW >= max(1,N). */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
 | 
						|
/*  reflectors */
 | 
						|
 | 
						|
/*     Q = H(n) H(n-1) . . . H(n-nb+1). */
 | 
						|
 | 
						|
/*  Each H(i) has the form */
 | 
						|
 | 
						|
/*     H(i) = I - tau * v * v' */
 | 
						|
 | 
						|
/*  where tau is a real scalar, and v is a real vector with */
 | 
						|
/*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
 | 
						|
/*  and tau in TAU(i-1). */
 | 
						|
 | 
						|
/*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
 | 
						|
/*  reflectors */
 | 
						|
 | 
						|
/*     Q = H(1) H(2) . . . H(nb). */
 | 
						|
 | 
						|
/*  Each H(i) has the form */
 | 
						|
 | 
						|
/*     H(i) = I - tau * v * v' */
 | 
						|
 | 
						|
/*  where tau is a real scalar, and v is a real vector with */
 | 
						|
/*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
 | 
						|
/*  and tau in TAU(i). */
 | 
						|
 | 
						|
/*  The elements of the vectors v together form the n-by-nb matrix V */
 | 
						|
/*  which is needed, with W, to apply the transformation to the unreduced */
 | 
						|
/*  part of the matrix, using a symmetric rank-2k update of the form: */
 | 
						|
/*  A := A - V*W' - W*V'. */
 | 
						|
 | 
						|
/*  The contents of A on exit are illustrated by the following examples */
 | 
						|
/*  with n = 5 and nb = 2: */
 | 
						|
 | 
						|
/*  if UPLO = 'U':                       if UPLO = 'L': */
 | 
						|
 | 
						|
/*    (  a   a   a   v4  v5 )              (  d                  ) */
 | 
						|
/*    (      a   a   v4  v5 )              (  1   d              ) */
 | 
						|
/*    (          a   1   v5 )              (  v1  1   a          ) */
 | 
						|
/*    (              d   1  )              (  v1  v2  a   a      ) */
 | 
						|
/*    (                  d  )              (  v1  v2  a   a   a  ) */
 | 
						|
 | 
						|
/*  where d denotes a diagonal element of the reduced matrix, a denotes */
 | 
						|
/*  an element of the original matrix that is unchanged, and vi denotes */
 | 
						|
/*  an element of the vector defining H(i). */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    --e;
 | 
						|
    --tau;
 | 
						|
    w_dim1 = *ldw;
 | 
						|
    w_offset = 1 + w_dim1;
 | 
						|
    w -= w_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (*n <= 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(uplo, "U")) {
 | 
						|
 | 
						|
/*        Reduce last NB columns of upper triangle */
 | 
						|
 | 
						|
	i__1 = *n - *nb + 1;
 | 
						|
	for (i__ = *n; i__ >= i__1; --i__) {
 | 
						|
	    iw = i__ - *n + *nb;
 | 
						|
	    if (i__ < *n) {
 | 
						|
 | 
						|
/*              Update A(1:i,i) */
 | 
						|
 | 
						|
		i__2 = *n - i__;
 | 
						|
		dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * 
 | 
						|
			a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
 | 
						|
			c_b6, &a[i__ * a_dim1 + 1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * 
 | 
						|
			w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
 | 
						|
			c_b6, &a[i__ * a_dim1 + 1], &c__1);
 | 
						|
	    }
 | 
						|
	    if (i__ > 1) {
 | 
						|
 | 
						|
/*              Generate elementary reflector H(i) to annihilate */
 | 
						|
/*              A(1:i-2,i) */
 | 
						|
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + 
 | 
						|
			1], &c__1, &tau[i__ - 1]);
 | 
						|
		e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
 | 
						|
		a[i__ - 1 + i__ * a_dim1] = 1.;
 | 
						|
 | 
						|
/*              Compute W(1:i-1,i) */
 | 
						|
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * 
 | 
						|
			a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &
 | 
						|
			c__1);
 | 
						|
		if (i__ < *n) {
 | 
						|
		    i__2 = i__ - 1;
 | 
						|
		    i__3 = *n - i__;
 | 
						|
		    dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * 
 | 
						|
			    w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
 | 
						|
			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
 | 
						|
		    i__2 = i__ - 1;
 | 
						|
		    i__3 = *n - i__;
 | 
						|
		    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
 | 
						|
			     a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
 | 
						|
			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
 | 
						|
		    i__2 = i__ - 1;
 | 
						|
		    i__3 = *n - i__;
 | 
						|
		    dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * 
 | 
						|
			    a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
 | 
						|
			    c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
 | 
						|
		    i__2 = i__ - 1;
 | 
						|
		    i__3 = *n - i__;
 | 
						|
		    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * 
 | 
						|
			    w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
 | 
						|
			    c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
 | 
						|
		}
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1], 
 | 
						|
			 &c__1, &a[i__ * a_dim1 + 1], &c__1);
 | 
						|
		i__2 = i__ - 1;
 | 
						|
		daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * 
 | 
						|
			w_dim1 + 1], &c__1);
 | 
						|
	    }
 | 
						|
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Reduce first NB columns of lower triangle */
 | 
						|
 | 
						|
	i__1 = *nb;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
/*           Update A(i:n,i) */
 | 
						|
 | 
						|
	    i__2 = *n - i__ + 1;
 | 
						|
	    i__3 = i__ - 1;
 | 
						|
	    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, 
 | 
						|
		     &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &
 | 
						|
		    c__1);
 | 
						|
	    i__2 = *n - i__ + 1;
 | 
						|
	    i__3 = i__ - 1;
 | 
						|
	    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, 
 | 
						|
		     &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &
 | 
						|
		    c__1);
 | 
						|
	    if (i__ < *n) {
 | 
						|
 | 
						|
/*              Generate elementary reflector H(i) to annihilate */
 | 
						|
/*              A(i+2:n,i) */
 | 
						|
 | 
						|
		i__2 = *n - i__;
 | 
						|
/* Computing MIN */
 | 
						|
		i__3 = i__ + 2;
 | 
						|
		dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ 
 | 
						|
			i__ * a_dim1], &c__1, &tau[i__]);
 | 
						|
		e[i__] = a[i__ + 1 + i__ * a_dim1];
 | 
						|
		a[i__ + 1 + i__ * a_dim1] = 1.;
 | 
						|
 | 
						|
/*              Compute W(i+1:n,i) */
 | 
						|
 | 
						|
		i__2 = *n - i__;
 | 
						|
		dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1]
 | 
						|
, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
 | 
						|
			i__ + 1 + i__ * w_dim1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		i__3 = i__ - 1;
 | 
						|
		dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], 
 | 
						|
			 ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
 | 
						|
			i__ * w_dim1 + 1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		i__3 = i__ - 1;
 | 
						|
		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + 
 | 
						|
			a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
 | 
						|
			i__ + 1 + i__ * w_dim1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		i__3 = i__ - 1;
 | 
						|
		dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], 
 | 
						|
			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
 | 
						|
			i__ * w_dim1 + 1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		i__3 = i__ - 1;
 | 
						|
		dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + 
 | 
						|
			w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
 | 
						|
			i__ + 1 + i__ * w_dim1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ * 
 | 
						|
			w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
 | 
						|
		i__2 = *n - i__;
 | 
						|
		daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
 | 
						|
			i__ + 1 + i__ * w_dim1], &c__1);
 | 
						|
	    }
 | 
						|
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DLATRD */
 | 
						|
 | 
						|
} /* dlatrd_ */
 |