368 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* Subroutine */ int dlasdq_(char *uplo, integer *sqre, integer *n, integer *
 | 
						|
	ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e, 
 | 
						|
	doublereal *vt, integer *ldvt, doublereal *u, integer *ldu, 
 | 
						|
	doublereal *c__, integer *ldc, doublereal *work, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
 | 
						|
	    i__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j;
 | 
						|
    doublereal r__, cs, sn;
 | 
						|
    integer np1, isub;
 | 
						|
    doublereal smin;
 | 
						|
    integer sqre1;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *, 
 | 
						|
	    integer *, doublereal *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *
 | 
						|
, doublereal *, integer *);
 | 
						|
    integer iuplo;
 | 
						|
    extern /* Subroutine */ int dlartg_(doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *), xerbla_(char *, 
 | 
						|
	    integer *), dbdsqr_(char *, integer *, integer *, integer 
 | 
						|
	    *, integer *, doublereal *, doublereal *, doublereal *, integer *, 
 | 
						|
	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    logical rotate;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DLASDQ computes the singular value decomposition (SVD) of a real */
 | 
						|
/*  (upper or lower) bidiagonal matrix with diagonal D and offdiagonal */
 | 
						|
/*  E, accumulating the transformations if desired. Letting B denote */
 | 
						|
/*  the input bidiagonal matrix, the algorithm computes orthogonal */
 | 
						|
/*  matrices Q and P such that B = Q * S * P' (P' denotes the transpose */
 | 
						|
/*  of P). The singular values S are overwritten on D. */
 | 
						|
 | 
						|
/*  The input matrix U  is changed to U  * Q  if desired. */
 | 
						|
/*  The input matrix VT is changed to P' * VT if desired. */
 | 
						|
/*  The input matrix C  is changed to Q' * C  if desired. */
 | 
						|
 | 
						|
/*  See "Computing  Small Singular Values of Bidiagonal Matrices With */
 | 
						|
/*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
 | 
						|
/*  LAPACK Working Note #3, for a detailed description of the algorithm. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  UPLO  (input) CHARACTER*1 */
 | 
						|
/*        On entry, UPLO specifies whether the input bidiagonal matrix */
 | 
						|
/*        is upper or lower bidiagonal, and wether it is square are */
 | 
						|
/*        not. */
 | 
						|
/*           UPLO = 'U' or 'u'   B is upper bidiagonal. */
 | 
						|
/*           UPLO = 'L' or 'l'   B is lower bidiagonal. */
 | 
						|
 | 
						|
/*  SQRE  (input) INTEGER */
 | 
						|
/*        = 0: then the input matrix is N-by-N. */
 | 
						|
/*        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and */
 | 
						|
/*             (N+1)-by-N if UPLU = 'L'. */
 | 
						|
 | 
						|
/*        The bidiagonal matrix has */
 | 
						|
/*        N = NL + NR + 1 rows and */
 | 
						|
/*        M = N + SQRE >= N columns. */
 | 
						|
 | 
						|
/*  N     (input) INTEGER */
 | 
						|
/*        On entry, N specifies the number of rows and columns */
 | 
						|
/*        in the matrix. N must be at least 0. */
 | 
						|
 | 
						|
/*  NCVT  (input) INTEGER */
 | 
						|
/*        On entry, NCVT specifies the number of columns of */
 | 
						|
/*        the matrix VT. NCVT must be at least 0. */
 | 
						|
 | 
						|
/*  NRU   (input) INTEGER */
 | 
						|
/*        On entry, NRU specifies the number of rows of */
 | 
						|
/*        the matrix U. NRU must be at least 0. */
 | 
						|
 | 
						|
/*  NCC   (input) INTEGER */
 | 
						|
/*        On entry, NCC specifies the number of columns of */
 | 
						|
/*        the matrix C. NCC must be at least 0. */
 | 
						|
 | 
						|
/*  D     (input/output) DOUBLE PRECISION array, dimension (N) */
 | 
						|
/*        On entry, D contains the diagonal entries of the */
 | 
						|
/*        bidiagonal matrix whose SVD is desired. On normal exit, */
 | 
						|
/*        D contains the singular values in ascending order. */
 | 
						|
 | 
						|
/*  E     (input/output) DOUBLE PRECISION array. */
 | 
						|
/*        dimension is (N-1) if SQRE = 0 and N if SQRE = 1. */
 | 
						|
/*        On entry, the entries of E contain the offdiagonal entries */
 | 
						|
/*        of the bidiagonal matrix whose SVD is desired. On normal */
 | 
						|
/*        exit, E will contain 0. If the algorithm does not converge, */
 | 
						|
/*        D and E will contain the diagonal and superdiagonal entries */
 | 
						|
/*        of a bidiagonal matrix orthogonally equivalent to the one */
 | 
						|
/*        given as input. */
 | 
						|
 | 
						|
/*  VT    (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) */
 | 
						|
/*        On entry, contains a matrix which on exit has been */
 | 
						|
/*        premultiplied by P', dimension N-by-NCVT if SQRE = 0 */
 | 
						|
/*        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). */
 | 
						|
 | 
						|
/*  LDVT  (input) INTEGER */
 | 
						|
/*        On entry, LDVT specifies the leading dimension of VT as */
 | 
						|
/*        declared in the calling (sub) program. LDVT must be at */
 | 
						|
/*        least 1. If NCVT is nonzero LDVT must also be at least N. */
 | 
						|
 | 
						|
/*  U     (input/output) DOUBLE PRECISION array, dimension (LDU, N) */
 | 
						|
/*        On entry, contains a  matrix which on exit has been */
 | 
						|
/*        postmultiplied by Q, dimension NRU-by-N if SQRE = 0 */
 | 
						|
/*        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). */
 | 
						|
 | 
						|
/*  LDU   (input) INTEGER */
 | 
						|
/*        On entry, LDU  specifies the leading dimension of U as */
 | 
						|
/*        declared in the calling (sub) program. LDU must be at */
 | 
						|
/*        least max( 1, NRU ) . */
 | 
						|
 | 
						|
/*  C     (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) */
 | 
						|
/*        On entry, contains an N-by-NCC matrix which on exit */
 | 
						|
/*        has been premultiplied by Q'  dimension N-by-NCC if SQRE = 0 */
 | 
						|
/*        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). */
 | 
						|
 | 
						|
/*  LDC   (input) INTEGER */
 | 
						|
/*        On entry, LDC  specifies the leading dimension of C as */
 | 
						|
/*        declared in the calling (sub) program. LDC must be at */
 | 
						|
/*        least 1. If NCC is nonzero, LDC must also be at least N. */
 | 
						|
 | 
						|
/*  WORK  (workspace) DOUBLE PRECISION array, dimension (4*N) */
 | 
						|
/*        Workspace. Only referenced if one of NCVT, NRU, or NCC is */
 | 
						|
/*        nonzero, and if N is at least 2. */
 | 
						|
 | 
						|
/*  INFO  (output) INTEGER */
 | 
						|
/*        On exit, a value of 0 indicates a successful exit. */
 | 
						|
/*        If INFO < 0, argument number -INFO is illegal. */
 | 
						|
/*        If INFO > 0, the algorithm did not converge, and INFO */
 | 
						|
/*        specifies how many superdiagonals did not converge. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
 | 
						|
/*     California at Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    vt_dim1 = *ldvt;
 | 
						|
    vt_offset = 1 + vt_dim1;
 | 
						|
    vt -= vt_offset;
 | 
						|
    u_dim1 = *ldu;
 | 
						|
    u_offset = 1 + u_dim1;
 | 
						|
    u -= u_offset;
 | 
						|
    c_dim1 = *ldc;
 | 
						|
    c_offset = 1 + c_dim1;
 | 
						|
    c__ -= c_offset;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    iuplo = 0;
 | 
						|
    if (lsame_(uplo, "U")) {
 | 
						|
	iuplo = 1;
 | 
						|
    }
 | 
						|
    if (lsame_(uplo, "L")) {
 | 
						|
	iuplo = 2;
 | 
						|
    }
 | 
						|
    if (iuplo == 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*sqre < 0 || *sqre > 1) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*ncvt < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*nru < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ncc < 0) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (*ldu < max(1,*nru)) {
 | 
						|
	*info = -12;
 | 
						|
    } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
 | 
						|
	*info = -14;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DLASDQ", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     ROTATE is true if any singular vectors desired, false otherwise */
 | 
						|
 | 
						|
    rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
 | 
						|
    np1 = *n + 1;
 | 
						|
    sqre1 = *sqre;
 | 
						|
 | 
						|
/*     If matrix non-square upper bidiagonal, rotate to be lower */
 | 
						|
/*     bidiagonal.  The rotations are on the right. */
 | 
						|
 | 
						|
    if (iuplo == 1 && sqre1 == 1) {
 | 
						|
	i__1 = *n - 1;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 | 
						|
	    d__[i__] = r__;
 | 
						|
	    e[i__] = sn * d__[i__ + 1];
 | 
						|
	    d__[i__ + 1] = cs * d__[i__ + 1];
 | 
						|
	    if (rotate) {
 | 
						|
		work[i__] = cs;
 | 
						|
		work[*n + i__] = sn;
 | 
						|
	    }
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
	dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
 | 
						|
	d__[*n] = r__;
 | 
						|
	e[*n] = 0.;
 | 
						|
	if (rotate) {
 | 
						|
	    work[*n] = cs;
 | 
						|
	    work[*n + *n] = sn;
 | 
						|
	}
 | 
						|
	iuplo = 2;
 | 
						|
	sqre1 = 0;
 | 
						|
 | 
						|
/*        Update singular vectors if desired. */
 | 
						|
 | 
						|
	if (*ncvt > 0) {
 | 
						|
	    dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
 | 
						|
		    vt_offset], ldvt);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     If matrix lower bidiagonal, rotate to be upper bidiagonal */
 | 
						|
/*     by applying Givens rotations on the left. */
 | 
						|
 | 
						|
    if (iuplo == 2) {
 | 
						|
	i__1 = *n - 1;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
 | 
						|
	    d__[i__] = r__;
 | 
						|
	    e[i__] = sn * d__[i__ + 1];
 | 
						|
	    d__[i__ + 1] = cs * d__[i__ + 1];
 | 
						|
	    if (rotate) {
 | 
						|
		work[i__] = cs;
 | 
						|
		work[*n + i__] = sn;
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        If matrix (N+1)-by-N lower bidiagonal, one additional */
 | 
						|
/*        rotation is needed. */
 | 
						|
 | 
						|
	if (sqre1 == 1) {
 | 
						|
	    dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
 | 
						|
	    d__[*n] = r__;
 | 
						|
	    if (rotate) {
 | 
						|
		work[*n] = cs;
 | 
						|
		work[*n + *n] = sn;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Update singular vectors if desired. */
 | 
						|
 | 
						|
	if (*nru > 0) {
 | 
						|
	    if (sqre1 == 0) {
 | 
						|
		dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
 | 
						|
			u_offset], ldu);
 | 
						|
	    } else {
 | 
						|
		dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
 | 
						|
			u_offset], ldu);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (*ncc > 0) {
 | 
						|
	    if (sqre1 == 0) {
 | 
						|
		dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
 | 
						|
			c_offset], ldc);
 | 
						|
	    } else {
 | 
						|
		dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
 | 
						|
			c_offset], ldc);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Call DBDSQR to compute the SVD of the reduced real */
 | 
						|
/*     N-by-N upper bidiagonal matrix. */
 | 
						|
 | 
						|
    dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
 | 
						|
	    u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
 | 
						|
 | 
						|
/*     Sort the singular values into ascending order (insertion sort on */
 | 
						|
/*     singular values, but only one transposition per singular vector) */
 | 
						|
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
/*        Scan for smallest D(I). */
 | 
						|
 | 
						|
	isub = i__;
 | 
						|
	smin = d__[i__];
 | 
						|
	i__2 = *n;
 | 
						|
	for (j = i__ + 1; j <= i__2; ++j) {
 | 
						|
	    if (d__[j] < smin) {
 | 
						|
		isub = j;
 | 
						|
		smin = d__[j];
 | 
						|
	    }
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
	if (isub != i__) {
 | 
						|
 | 
						|
/*           Swap singular values and vectors. */
 | 
						|
 | 
						|
	    d__[isub] = d__[i__];
 | 
						|
	    d__[i__] = smin;
 | 
						|
	    if (*ncvt > 0) {
 | 
						|
		dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[i__ + vt_dim1], 
 | 
						|
			ldvt);
 | 
						|
	    }
 | 
						|
	    if (*nru > 0) {
 | 
						|
		dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[i__ * u_dim1 + 1]
 | 
						|
, &c__1);
 | 
						|
	    }
 | 
						|
	    if (*ncc > 0) {
 | 
						|
		dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[i__ + c_dim1], ldc)
 | 
						|
			;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DLASDQ */
 | 
						|
 | 
						|
} /* dlasdq_ */
 |