252 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "clapack.h"
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__2 = 2;
 | 
						|
static doublereal c_b20 = -1.;
 | 
						|
static doublereal c_b22 = 1.;
 | 
						|
 | 
						|
/* Subroutine */ int dgetri_(integer *n, doublereal *a, integer *lda, integer 
 | 
						|
	*ipiv, doublereal *work, integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, jb, nb, jj, jp, nn, iws;
 | 
						|
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, integer *),
 | 
						|
	     dgemv_(char *, integer *, integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    integer nbmin;
 | 
						|
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *), dtrsm_(char *, char *, char *, char *, 
 | 
						|
	    integer *, integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *), xerbla_(
 | 
						|
	    char *, integer *);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    integer ldwork;
 | 
						|
    extern /* Subroutine */ int dtrtri_(char *, char *, integer *, doublereal 
 | 
						|
	    *, integer *, integer *);
 | 
						|
    integer lwkopt;
 | 
						|
    logical lquery;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.1) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DGETRI computes the inverse of a matrix using the LU factorization */
 | 
						|
/*  computed by DGETRF. */
 | 
						|
 | 
						|
/*  This method inverts U and then computes inv(A) by solving the system */
 | 
						|
/*  inv(A)*L = inv(U) for inv(A). */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix A.  N >= 0. */
 | 
						|
 | 
						|
/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 | 
						|
/*          On entry, the factors L and U from the factorization */
 | 
						|
/*          A = P*L*U as computed by DGETRF. */
 | 
						|
/*          On exit, if INFO = 0, the inverse of the original matrix A. */
 | 
						|
 | 
						|
/*  LDA     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array A.  LDA >= max(1,N). */
 | 
						|
 | 
						|
/*  IPIV    (input) INTEGER array, dimension (N) */
 | 
						|
/*          The pivot indices from DGETRF; for 1<=i<=N, row i of the */
 | 
						|
/*          matrix was interchanged with row IPIV(i). */
 | 
						|
 | 
						|
/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | 
						|
/*          On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */
 | 
						|
 | 
						|
/*  LWORK   (input) INTEGER */
 | 
						|
/*          The dimension of the array WORK.  LWORK >= max(1,N). */
 | 
						|
/*          For optimal performance LWORK >= N*NB, where NB is */
 | 
						|
/*          the optimal blocksize returned by ILAENV. */
 | 
						|
 | 
						|
/*          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/*          only calculates the optimal size of the WORK array, returns */
 | 
						|
/*          this value as the first entry of the WORK array, and no error */
 | 
						|
/*          message related to LWORK is issued by XERBLA. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          = 0:  successful exit */
 | 
						|
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/*          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is */
 | 
						|
/*                singular and its inverse could not be computed. */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    --ipiv;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    nb = ilaenv_(&c__1, "DGETRI", " ", n, &c_n1, &c_n1, &c_n1);
 | 
						|
    lwkopt = *n * nb;
 | 
						|
    work[1] = (doublereal) lwkopt;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (*n < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*lda < max(1,*n)) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*lwork < max(1,*n) && ! lquery) {
 | 
						|
	*info = -6;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DGETRI", &i__1);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Form inv(U).  If INFO > 0 from DTRTRI, then U is singular, */
 | 
						|
/*     and the inverse is not computed. */
 | 
						|
 | 
						|
    dtrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
 | 
						|
    if (*info > 0) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    nbmin = 2;
 | 
						|
    ldwork = *n;
 | 
						|
    if (nb > 1 && nb < *n) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = ldwork * nb;
 | 
						|
	iws = max(i__1,1);
 | 
						|
	if (*lwork < iws) {
 | 
						|
	    nb = *lwork / ldwork;
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = 2, i__2 = ilaenv_(&c__2, "DGETRI", " ", n, &c_n1, &c_n1, &
 | 
						|
		    c_n1);
 | 
						|
	    nbmin = max(i__1,i__2);
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	iws = *n;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Solve the equation inv(A)*L = inv(U) for inv(A). */
 | 
						|
 | 
						|
    if (nb < nbmin || nb >= *n) {
 | 
						|
 | 
						|
/*        Use unblocked code. */
 | 
						|
 | 
						|
	for (j = *n; j >= 1; --j) {
 | 
						|
 | 
						|
/*           Copy current column of L to WORK and replace with zeros. */
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (i__ = j + 1; i__ <= i__1; ++i__) {
 | 
						|
		work[i__] = a[i__ + j * a_dim1];
 | 
						|
		a[i__ + j * a_dim1] = 0.;
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Compute current column of inv(A). */
 | 
						|
 | 
						|
	    if (j < *n) {
 | 
						|
		i__1 = *n - j;
 | 
						|
		dgemv_("No transpose", n, &i__1, &c_b20, &a[(j + 1) * a_dim1 
 | 
						|
			+ 1], lda, &work[j + 1], &c__1, &c_b22, &a[j * a_dim1 
 | 
						|
			+ 1], &c__1);
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Use blocked code. */
 | 
						|
 | 
						|
	nn = (*n - 1) / nb * nb + 1;
 | 
						|
	i__1 = -nb;
 | 
						|
	for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
 | 
						|
/* Computing MIN */
 | 
						|
	    i__2 = nb, i__3 = *n - j + 1;
 | 
						|
	    jb = min(i__2,i__3);
 | 
						|
 | 
						|
/*           Copy current block column of L to WORK and replace with */
 | 
						|
/*           zeros. */
 | 
						|
 | 
						|
	    i__2 = j + jb - 1;
 | 
						|
	    for (jj = j; jj <= i__2; ++jj) {
 | 
						|
		i__3 = *n;
 | 
						|
		for (i__ = jj + 1; i__ <= i__3; ++i__) {
 | 
						|
		    work[i__ + (jj - j) * ldwork] = a[i__ + jj * a_dim1];
 | 
						|
		    a[i__ + jj * a_dim1] = 0.;
 | 
						|
/* L30: */
 | 
						|
		}
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Compute current block column of inv(A). */
 | 
						|
 | 
						|
	    if (j + jb <= *n) {
 | 
						|
		i__2 = *n - j - jb + 1;
 | 
						|
		dgemm_("No transpose", "No transpose", n, &jb, &i__2, &c_b20, 
 | 
						|
			&a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &
 | 
						|
			ldwork, &c_b22, &a[j * a_dim1 + 1], lda);
 | 
						|
	    }
 | 
						|
	    dtrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b22, &
 | 
						|
		    work[j], &ldwork, &a[j * a_dim1 + 1], lda);
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Apply column interchanges. */
 | 
						|
 | 
						|
    for (j = *n - 1; j >= 1; --j) {
 | 
						|
	jp = ipiv[j];
 | 
						|
	if (jp != j) {
 | 
						|
	    dswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
 | 
						|
	}
 | 
						|
/* L60: */
 | 
						|
    }
 | 
						|
 | 
						|
    work[1] = (doublereal) iws;
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DGETRI */
 | 
						|
 | 
						|
} /* dgetri_ */
 |