1436 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1436 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | 
						|
// Digital Ltd. LLC
 | 
						|
//
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
// *       Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
// *       Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
// *       Neither the name of Industrial Light & Magic nor the names of
 | 
						|
// its contributors may be used to endorse or promote products derived
 | 
						|
// from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
///////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
 | 
						|
#ifndef INCLUDED_IMATHMATRIXALGO_H
 | 
						|
#define INCLUDED_IMATHMATRIXALGO_H
 | 
						|
 | 
						|
//-------------------------------------------------------------------------
 | 
						|
//
 | 
						|
//      This file contains algorithms applied to or in conjunction with
 | 
						|
//	transformation matrices (Imath::Matrix33 and Imath::Matrix44).
 | 
						|
//	The assumption made is that these functions are called much less
 | 
						|
//	often than the basic point functions or these functions require
 | 
						|
//	more support classes.
 | 
						|
//
 | 
						|
//	This file also defines a few predefined constant matrices.
 | 
						|
//
 | 
						|
//-------------------------------------------------------------------------
 | 
						|
 | 
						|
#include "ImathMatrix.h"
 | 
						|
#include "ImathQuat.h"
 | 
						|
#include "ImathEuler.h"
 | 
						|
#include "ImathExc.h"
 | 
						|
#include "ImathVec.h"
 | 
						|
#include "ImathLimits.h"
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
 | 
						|
#ifdef OPENEXR_DLL
 | 
						|
    #ifdef IMATH_EXPORTS
 | 
						|
        #define IMATH_EXPORT_CONST extern __declspec(dllexport)
 | 
						|
    #else
 | 
						|
    #define IMATH_EXPORT_CONST extern __declspec(dllimport)
 | 
						|
    #endif
 | 
						|
#else
 | 
						|
    #define IMATH_EXPORT_CONST extern const
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
namespace Imath {
 | 
						|
 | 
						|
//------------------
 | 
						|
// Identity matrices
 | 
						|
//------------------
 | 
						|
 | 
						|
IMATH_EXPORT_CONST M33f identity33f;
 | 
						|
IMATH_EXPORT_CONST M44f identity44f;
 | 
						|
IMATH_EXPORT_CONST M33d identity33d;
 | 
						|
IMATH_EXPORT_CONST M44d identity44d;
 | 
						|
 | 
						|
//----------------------------------------------------------------------
 | 
						|
// Extract scale, shear, rotation, and translation values from a matrix:
 | 
						|
//
 | 
						|
// Notes:
 | 
						|
//
 | 
						|
// This implementation follows the technique described in the paper by
 | 
						|
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
 | 
						|
// Matrix into Simple Transformations", p. 320.
 | 
						|
//
 | 
						|
// - Some of the functions below have an optional exc parameter
 | 
						|
//   that determines the functions' behavior when the matrix'
 | 
						|
//   scaling is very close to zero:
 | 
						|
//
 | 
						|
//   If exc is true, the functions throw an Imath::ZeroScale exception.
 | 
						|
//
 | 
						|
//   If exc is false:
 | 
						|
//
 | 
						|
//      extractScaling (m, s)            returns false, s is invalid
 | 
						|
//	sansScaling (m)		         returns m
 | 
						|
//	removeScaling (m)	         returns false, m is unchanged
 | 
						|
//      sansScalingAndShear (m)          returns m
 | 
						|
//      removeScalingAndShear (m)        returns false, m is unchanged
 | 
						|
//      extractAndRemoveScalingAndShear (m, s, h)
 | 
						|
//                                       returns false, m is unchanged,
 | 
						|
//                                                      (sh) are invalid
 | 
						|
//      checkForZeroScaleInRow ()        returns false
 | 
						|
//	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
 | 
						|
//
 | 
						|
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX()
 | 
						|
//   assume that the matrix does not include shear or non-uniform scaling,
 | 
						|
//   but they do not examine the matrix to verify this assumption.
 | 
						|
//   Matrices with shear or non-uniform scaling are likely to produce
 | 
						|
//   meaningless results.  Therefore, you should use the
 | 
						|
//   removeScalingAndShear() routine, if necessary, prior to calling
 | 
						|
//   extractEuler...() .
 | 
						|
//
 | 
						|
// - All functions assume that the matrix does not include perspective
 | 
						|
//   transformation(s), but they do not examine the matrix to verify
 | 
						|
//   this assumption.  Matrices with perspective transformations are
 | 
						|
//   likely to produce meaningless results.
 | 
						|
//
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Declarations for 4x4 matrix.
 | 
						|
//
 | 
						|
 | 
						|
template <class T>  bool        extractScaling
 | 
						|
                                            (const Matrix44<T> &mat,
 | 
						|
                         Vec3<T> &scl,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        removeScaling
 | 
						|
                                            (Matrix44<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        extractScalingAndShear
 | 
						|
                                            (const Matrix44<T> &mat,
 | 
						|
                         Vec3<T> &scl,
 | 
						|
                         Vec3<T> &shr,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  Matrix44<T> sansScalingAndShear
 | 
						|
                                            (const Matrix44<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  void        sansScalingAndShear
 | 
						|
                                            (Matrix44<T> &result,
 | 
						|
                                             const Matrix44<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        removeScalingAndShear
 | 
						|
                                            (Matrix44<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        extractAndRemoveScalingAndShear
 | 
						|
                                            (Matrix44<T> &mat,
 | 
						|
                         Vec3<T>     &scl,
 | 
						|
                         Vec3<T>     &shr,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  void	extractEulerXYZ
 | 
						|
                                            (const Matrix44<T> &mat,
 | 
						|
                         Vec3<T> &rot);
 | 
						|
 | 
						|
template <class T>  void	extractEulerZYX
 | 
						|
                                            (const Matrix44<T> &mat,
 | 
						|
                         Vec3<T> &rot);
 | 
						|
 | 
						|
template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);
 | 
						|
 | 
						|
template <class T>  bool	extractSHRT
 | 
						|
                                    (const Matrix44<T> &mat,
 | 
						|
                     Vec3<T> &s,
 | 
						|
                     Vec3<T> &h,
 | 
						|
                     Vec3<T> &r,
 | 
						|
                     Vec3<T> &t,
 | 
						|
                     bool exc /*= true*/,
 | 
						|
                     typename Euler<T>::Order rOrder);
 | 
						|
 | 
						|
template <class T>  bool	extractSHRT
 | 
						|
                                    (const Matrix44<T> &mat,
 | 
						|
                     Vec3<T> &s,
 | 
						|
                     Vec3<T> &h,
 | 
						|
                     Vec3<T> &r,
 | 
						|
                     Vec3<T> &t,
 | 
						|
                     bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool	extractSHRT
 | 
						|
                                    (const Matrix44<T> &mat,
 | 
						|
                     Vec3<T> &s,
 | 
						|
                     Vec3<T> &h,
 | 
						|
                     Euler<T> &r,
 | 
						|
                     Vec3<T> &t,
 | 
						|
                     bool exc = true);
 | 
						|
 | 
						|
//
 | 
						|
// Internal utility function.
 | 
						|
//
 | 
						|
 | 
						|
template <class T>  bool	checkForZeroScaleInRow
 | 
						|
                                            (const T       &scl,
 | 
						|
                         const Vec3<T> &row,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  Matrix44<T> outerProduct
 | 
						|
                                            ( const Vec4<T> &a,
 | 
						|
                                              const Vec4<T> &b);
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Returns a matrix that rotates "fromDirection" vector to "toDirection"
 | 
						|
// vector.
 | 
						|
//
 | 
						|
 | 
						|
template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
 | 
						|
                        const Vec3<T> &toDirection);
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Returns a matrix that rotates the "fromDir" vector
 | 
						|
// so that it points towards "toDir".  You may also
 | 
						|
// specify that you want the up vector to be pointing
 | 
						|
// in a certain direction "upDir".
 | 
						|
//
 | 
						|
 | 
						|
template <class T> Matrix44<T>	rotationMatrixWithUpDir
 | 
						|
                                            (const Vec3<T> &fromDir,
 | 
						|
                         const Vec3<T> &toDir,
 | 
						|
                         const Vec3<T> &upDir);
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Constructs a matrix that rotates the z-axis so that it
 | 
						|
// points towards "targetDir".  You must also specify
 | 
						|
// that you want the up vector to be pointing in a
 | 
						|
// certain direction "upDir".
 | 
						|
//
 | 
						|
// Notes: The following degenerate cases are handled:
 | 
						|
//        (a) when the directions given by "toDir" and "upDir"
 | 
						|
//            are parallel or opposite;
 | 
						|
//            (the direction vectors must have a non-zero cross product)
 | 
						|
//        (b) when any of the given direction vectors have zero length
 | 
						|
//
 | 
						|
 | 
						|
template <class T> void	alignZAxisWithTargetDir
 | 
						|
                                            (Matrix44<T> &result,
 | 
						|
                                             Vec3<T>      targetDir,
 | 
						|
                         Vec3<T>      upDir);
 | 
						|
 | 
						|
 | 
						|
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
 | 
						|
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
 | 
						|
// Inputs are :
 | 
						|
//     -the position of the frame
 | 
						|
//     -the x axis direction of the frame
 | 
						|
//     -a normal to the y axis of the frame
 | 
						|
// Return is the orthonormal frame
 | 
						|
template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p,
 | 
						|
                                                  const Vec3<T>& xDir,
 | 
						|
                                                  const Vec3<T>& normal);
 | 
						|
 | 
						|
// Add a translate/rotate/scale offset to an input frame
 | 
						|
// and put it in another frame of reference
 | 
						|
// Inputs are :
 | 
						|
//     - input frame
 | 
						|
//     - translate offset
 | 
						|
//     - rotate    offset in degrees
 | 
						|
//     - scale     offset
 | 
						|
//     - frame of reference
 | 
						|
// Output is the offsetted frame
 | 
						|
template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat,
 | 
						|
                                          const Vec3<T>&     tOffset,
 | 
						|
                                          const Vec3<T>&     rOffset,
 | 
						|
                                          const Vec3<T>&     sOffset,
 | 
						|
                                          const Vec3<T>&     ref);
 | 
						|
 | 
						|
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
 | 
						|
// Inputs are :
 | 
						|
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
 | 
						|
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
 | 
						|
//      -Matrix A
 | 
						|
//      -Matrix B
 | 
						|
// Return Matrix A with tweaked rotation/scale
 | 
						|
template <class T> Matrix44<T> computeRSMatrix( bool               keepRotateA,
 | 
						|
                                                bool               keepScaleA,
 | 
						|
                                                const Matrix44<T>& A,
 | 
						|
                                                const Matrix44<T>& B);
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Declarations for 3x3 matrix.
 | 
						|
//
 | 
						|
 | 
						|
 | 
						|
template <class T>  bool        extractScaling
 | 
						|
                                            (const Matrix33<T> &mat,
 | 
						|
                         Vec2<T> &scl,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        removeScaling
 | 
						|
                                            (Matrix33<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        extractScalingAndShear
 | 
						|
                                            (const Matrix33<T> &mat,
 | 
						|
                         Vec2<T> &scl,
 | 
						|
                         T &h,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  Matrix33<T> sansScalingAndShear
 | 
						|
                                            (const Matrix33<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        removeScalingAndShear
 | 
						|
                                            (Matrix33<T> &mat,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool        extractAndRemoveScalingAndShear
 | 
						|
                                            (Matrix33<T> &mat,
 | 
						|
                         Vec2<T>     &scl,
 | 
						|
                         T           &shr,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  void	extractEuler
 | 
						|
                                            (const Matrix33<T> &mat,
 | 
						|
                         T       &rot);
 | 
						|
 | 
						|
template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
 | 
						|
                         Vec2<T> &s,
 | 
						|
                         T       &h,
 | 
						|
                         T       &r,
 | 
						|
                         Vec2<T> &t,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  bool	checkForZeroScaleInRow
 | 
						|
                                            (const T       &scl,
 | 
						|
                         const Vec2<T> &row,
 | 
						|
                         bool exc = true);
 | 
						|
 | 
						|
template <class T>  Matrix33<T> outerProduct
 | 
						|
                                            ( const Vec3<T> &a,
 | 
						|
                                              const Vec3<T> &b);
 | 
						|
 | 
						|
 | 
						|
//-----------------------------------------------------------------------------
 | 
						|
// Implementation for 4x4 Matrix
 | 
						|
//------------------------------
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
 | 
						|
{
 | 
						|
    Vec3<T> shr;
 | 
						|
    Matrix44<T> M (mat);
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
sansScaling (const Matrix44<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec3<T> scl;
 | 
						|
    Vec3<T> shr;
 | 
						|
    Vec3<T> rot;
 | 
						|
    Vec3<T> tran;
 | 
						|
 | 
						|
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | 
						|
    return mat;
 | 
						|
 | 
						|
    Matrix44<T> M;
 | 
						|
 | 
						|
    M.translate (tran);
 | 
						|
    M.rotate (rot);
 | 
						|
    M.shear (shr);
 | 
						|
 | 
						|
    return M;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
removeScaling (Matrix44<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec3<T> scl;
 | 
						|
    Vec3<T> shr;
 | 
						|
    Vec3<T> rot;
 | 
						|
    Vec3<T> tran;
 | 
						|
 | 
						|
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    mat.makeIdentity ();
 | 
						|
    mat.translate (tran);
 | 
						|
    mat.rotate (rot);
 | 
						|
    mat.shear (shr);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractScalingAndShear (const Matrix44<T> &mat,
 | 
						|
            Vec3<T> &scl, Vec3<T> &shr, bool exc)
 | 
						|
{
 | 
						|
    Matrix44<T> M (mat);
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
sansScalingAndShear (const Matrix44<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec3<T> scl;
 | 
						|
    Vec3<T> shr;
 | 
						|
    Matrix44<T> M (mat);
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | 
						|
    return mat;
 | 
						|
 | 
						|
    return M;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
void
 | 
						|
sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec3<T> scl;
 | 
						|
    Vec3<T> shr;
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (result, scl, shr, exc))
 | 
						|
    result = mat;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
removeScalingAndShear (Matrix44<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec3<T> scl;
 | 
						|
    Vec3<T> shr;
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractAndRemoveScalingAndShear (Matrix44<T> &mat,
 | 
						|
                 Vec3<T> &scl, Vec3<T> &shr, bool exc)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // This implementation follows the technique described in the paper by
 | 
						|
    // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a
 | 
						|
    // Matrix into Simple Transformations", p. 320.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> row[3];
 | 
						|
 | 
						|
    row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
 | 
						|
    row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
 | 
						|
    row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
 | 
						|
 | 
						|
    T maxVal = 0;
 | 
						|
    for (int i=0; i < 3; i++)
 | 
						|
    for (int j=0; j < 3; j++)
 | 
						|
        if (Imath::abs (row[i][j]) > maxVal)
 | 
						|
        maxVal = Imath::abs (row[i][j]);
 | 
						|
 | 
						|
    //
 | 
						|
    // We normalize the 3x3 matrix here.
 | 
						|
    // It was noticed that this can improve numerical stability significantly,
 | 
						|
    // especially when many of the upper 3x3 matrix's coefficients are very
 | 
						|
    // close to zero; we correct for this step at the end by multiplying the
 | 
						|
    // scaling factors by maxVal at the end (shear and rotation are not
 | 
						|
    // affected by the normalization).
 | 
						|
 | 
						|
    if (maxVal != 0)
 | 
						|
    {
 | 
						|
    for (int i=0; i < 3; i++)
 | 
						|
        if (! checkForZeroScaleInRow (maxVal, row[i], exc))
 | 
						|
        return false;
 | 
						|
        else
 | 
						|
        row[i] /= maxVal;
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute X scale factor.
 | 
						|
    scl.x = row[0].length ();
 | 
						|
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    // Normalize first row.
 | 
						|
    row[0] /= scl.x;
 | 
						|
 | 
						|
    // An XY shear factor will shear the X coord. as the Y coord. changes.
 | 
						|
    // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
 | 
						|
    // extract the first 3 because we can effect the last 3 by shearing in
 | 
						|
    // XY, XZ, YZ combined rotations and scales.
 | 
						|
    //
 | 
						|
    // shear matrix <   1,  YX,  ZX,  0,
 | 
						|
    //                 XY,   1,  ZY,  0,
 | 
						|
    //                 XZ,  YZ,   1,  0,
 | 
						|
    //                  0,   0,   0,  1 >
 | 
						|
 | 
						|
    // Compute XY shear factor and make 2nd row orthogonal to 1st.
 | 
						|
    shr[0]  = row[0].dot (row[1]);
 | 
						|
    row[1] -= shr[0] * row[0];
 | 
						|
 | 
						|
    // Now, compute Y scale.
 | 
						|
    scl.y = row[1].length ();
 | 
						|
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    // Normalize 2nd row and correct the XY shear factor for Y scaling.
 | 
						|
    row[1] /= scl.y;
 | 
						|
    shr[0] /= scl.y;
 | 
						|
 | 
						|
    // Compute XZ and YZ shears, orthogonalize 3rd row.
 | 
						|
    shr[1]  = row[0].dot (row[2]);
 | 
						|
    row[2] -= shr[1] * row[0];
 | 
						|
    shr[2]  = row[1].dot (row[2]);
 | 
						|
    row[2] -= shr[2] * row[1];
 | 
						|
 | 
						|
    // Next, get Z scale.
 | 
						|
    scl.z = row[2].length ();
 | 
						|
    if (! checkForZeroScaleInRow (scl.z, row[2], exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
 | 
						|
    row[2] /= scl.z;
 | 
						|
    shr[1] /= scl.z;
 | 
						|
    shr[2] /= scl.z;
 | 
						|
 | 
						|
    // At this point, the upper 3x3 matrix in mat is orthonormal.
 | 
						|
    // Check for a coordinate system flip. If the determinant
 | 
						|
    // is less than zero, then negate the matrix and the scaling factors.
 | 
						|
    if (row[0].dot (row[1].cross (row[2])) < 0)
 | 
						|
    for (int  i=0; i < 3; i++)
 | 
						|
    {
 | 
						|
        scl[i] *= -1;
 | 
						|
        row[i] *= -1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy over the orthonormal rows into the returned matrix.
 | 
						|
    // The upper 3x3 matrix in mat is now a rotation matrix.
 | 
						|
    for (int i=0; i < 3; i++)
 | 
						|
    {
 | 
						|
    mat[i][0] = row[i][0];
 | 
						|
    mat[i][1] = row[i][1];
 | 
						|
    mat[i][2] = row[i][2];
 | 
						|
    }
 | 
						|
 | 
						|
    // Correct the scaling factors for the normalization step that we
 | 
						|
    // performed above; shear and rotation are not affected by the
 | 
						|
    // normalization.
 | 
						|
    scl *= maxVal;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
void
 | 
						|
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Normalize the local x, y and z axes to remove scaling.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
 | 
						|
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
 | 
						|
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
 | 
						|
 | 
						|
    i.normalize();
 | 
						|
    j.normalize();
 | 
						|
    k.normalize();
 | 
						|
 | 
						|
    Matrix44<T> M (i[0], i[1], i[2], 0,
 | 
						|
           j[0], j[1], j[2], 0,
 | 
						|
           k[0], k[1], k[2], 0,
 | 
						|
           0,    0,    0,    1);
 | 
						|
 | 
						|
    //
 | 
						|
    // Extract the first angle, rot.x.
 | 
						|
    //
 | 
						|
 | 
						|
    rot.x = Math<T>::atan2 (M[1][2], M[2][2]);
 | 
						|
 | 
						|
    //
 | 
						|
    // Remove the rot.x rotation from M, so that the remaining
 | 
						|
    // rotation, N, is only around two axes, and gimbal lock
 | 
						|
    // cannot occur.
 | 
						|
    //
 | 
						|
 | 
						|
    Matrix44<T> N;
 | 
						|
    N.rotate (Vec3<T> (-rot.x, 0, 0));
 | 
						|
    N = N * M;
 | 
						|
 | 
						|
    //
 | 
						|
    // Extract the other two angles, rot.y and rot.z, from N.
 | 
						|
    //
 | 
						|
 | 
						|
    T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
 | 
						|
    rot.y = Math<T>::atan2 (-N[0][2], cy);
 | 
						|
    rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
void
 | 
						|
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Normalize the local x, y and z axes to remove scaling.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
 | 
						|
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
 | 
						|
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);
 | 
						|
 | 
						|
    i.normalize();
 | 
						|
    j.normalize();
 | 
						|
    k.normalize();
 | 
						|
 | 
						|
    Matrix44<T> M (i[0], i[1], i[2], 0,
 | 
						|
           j[0], j[1], j[2], 0,
 | 
						|
           k[0], k[1], k[2], 0,
 | 
						|
           0,    0,    0,    1);
 | 
						|
 | 
						|
    //
 | 
						|
    // Extract the first angle, rot.x.
 | 
						|
    //
 | 
						|
 | 
						|
    rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);
 | 
						|
 | 
						|
    //
 | 
						|
    // Remove the x rotation from M, so that the remaining
 | 
						|
    // rotation, N, is only around two axes, and gimbal lock
 | 
						|
    // cannot occur.
 | 
						|
    //
 | 
						|
 | 
						|
    Matrix44<T> N;
 | 
						|
    N.rotate (Vec3<T> (0, 0, -rot.x));
 | 
						|
    N = N * M;
 | 
						|
 | 
						|
    //
 | 
						|
    // Extract the other two angles, rot.y and rot.z, from N.
 | 
						|
    //
 | 
						|
 | 
						|
    T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
 | 
						|
    rot.y = -Math<T>::atan2 (-N[2][0], cy);
 | 
						|
    rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Quat<T>
 | 
						|
extractQuat (const Matrix44<T> &mat)
 | 
						|
{
 | 
						|
  Matrix44<T> rot;
 | 
						|
 | 
						|
  T        tr, s;
 | 
						|
  T         q[4];
 | 
						|
  int    i, j, k;
 | 
						|
  Quat<T>   quat;
 | 
						|
 | 
						|
  int nxt[3] = {1, 2, 0};
 | 
						|
  tr = mat[0][0] + mat[1][1] + mat[2][2];
 | 
						|
 | 
						|
  // check the diagonal
 | 
						|
  if (tr > 0.0) {
 | 
						|
     s = Math<T>::sqrt (tr + T(1.0));
 | 
						|
     quat.r = s / T(2.0);
 | 
						|
     s = T(0.5) / s;
 | 
						|
 | 
						|
     quat.v.x = (mat[1][2] - mat[2][1]) * s;
 | 
						|
     quat.v.y = (mat[2][0] - mat[0][2]) * s;
 | 
						|
     quat.v.z = (mat[0][1] - mat[1][0]) * s;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
     // diagonal is negative
 | 
						|
     i = 0;
 | 
						|
     if (mat[1][1] > mat[0][0])
 | 
						|
        i=1;
 | 
						|
     if (mat[2][2] > mat[i][i])
 | 
						|
        i=2;
 | 
						|
 | 
						|
     j = nxt[i];
 | 
						|
     k = nxt[j];
 | 
						|
     s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0));
 | 
						|
 | 
						|
     q[i] = s * T(0.5);
 | 
						|
     if (s != T(0.0))
 | 
						|
        s = T(0.5) / s;
 | 
						|
 | 
						|
     q[3] = (mat[j][k] - mat[k][j]) * s;
 | 
						|
     q[j] = (mat[i][j] + mat[j][i]) * s;
 | 
						|
     q[k] = (mat[i][k] + mat[k][i]) * s;
 | 
						|
 | 
						|
     quat.v.x = q[0];
 | 
						|
     quat.v.y = q[1];
 | 
						|
     quat.v.z = q[2];
 | 
						|
     quat.r = q[3];
 | 
						|
 }
 | 
						|
 | 
						|
  return quat;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractSHRT (const Matrix44<T> &mat,
 | 
						|
         Vec3<T> &s,
 | 
						|
         Vec3<T> &h,
 | 
						|
         Vec3<T> &r,
 | 
						|
         Vec3<T> &t,
 | 
						|
         bool exc /* = true */ ,
 | 
						|
         typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
 | 
						|
{
 | 
						|
    Matrix44<T> rot;
 | 
						|
 | 
						|
    rot = mat;
 | 
						|
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    extractEulerXYZ (rot, r);
 | 
						|
 | 
						|
    t.x = mat[3][0];
 | 
						|
    t.y = mat[3][1];
 | 
						|
    t.z = mat[3][2];
 | 
						|
 | 
						|
    if (rOrder != Euler<T>::XYZ)
 | 
						|
    {
 | 
						|
    Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ);
 | 
						|
    Imath::Euler<T> e (eXYZ, rOrder);
 | 
						|
    r = e.toXYZVector ();
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractSHRT (const Matrix44<T> &mat,
 | 
						|
         Vec3<T> &s,
 | 
						|
         Vec3<T> &h,
 | 
						|
         Vec3<T> &r,
 | 
						|
         Vec3<T> &t,
 | 
						|
         bool exc)
 | 
						|
{
 | 
						|
    return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ);
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractSHRT (const Matrix44<T> &mat,
 | 
						|
         Vec3<T> &s,
 | 
						|
         Vec3<T> &h,
 | 
						|
         Euler<T> &r,
 | 
						|
         Vec3<T> &t,
 | 
						|
         bool exc /* = true */)
 | 
						|
{
 | 
						|
    return extractSHRT (mat, s, h, r, t, exc, r.order ());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
checkForZeroScaleInRow (const T& scl,
 | 
						|
            const Vec3<T> &row,
 | 
						|
            bool exc /* = true */ )
 | 
						|
{
 | 
						|
    for (int i = 0; i < 3; i++)
 | 
						|
    {
 | 
						|
    if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
 | 
						|
    {
 | 
						|
        if (exc)
 | 
						|
        throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
 | 
						|
                       "from matrix.");
 | 
						|
        else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
outerProduct (const Vec4<T> &a, const Vec4<T> &b )
 | 
						|
{
 | 
						|
    return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w,
 | 
						|
                        a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w,
 | 
						|
                        a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w,
 | 
						|
                        a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w);
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
 | 
						|
{
 | 
						|
    Quat<T> q;
 | 
						|
    q.setRotation(from, to);
 | 
						|
    return q.toMatrix44();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
rotationMatrixWithUpDir (const Vec3<T> &fromDir,
 | 
						|
             const Vec3<T> &toDir,
 | 
						|
             const Vec3<T> &upDir)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // The goal is to obtain a rotation matrix that takes
 | 
						|
    // "fromDir" to "toDir".  We do this in two steps and
 | 
						|
    // compose the resulting rotation matrices;
 | 
						|
    //    (a) rotate "fromDir" into the z-axis
 | 
						|
    //    (b) rotate the z-axis into "toDir"
 | 
						|
    //
 | 
						|
 | 
						|
    // The from direction must be non-zero; but we allow zero to and up dirs.
 | 
						|
    if (fromDir.length () == 0)
 | 
						|
    return Matrix44<T> ();
 | 
						|
 | 
						|
    else
 | 
						|
    {
 | 
						|
    Matrix44<T> zAxis2FromDir( Imath::UNINITIALIZED );
 | 
						|
    alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0));
 | 
						|
 | 
						|
    Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
 | 
						|
 | 
						|
    Matrix44<T> zAxis2ToDir( Imath::UNINITIALIZED );
 | 
						|
    alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir);
 | 
						|
 | 
						|
    return fromDir2zAxis * zAxis2ToDir;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
void
 | 
						|
alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Ensure that the target direction is non-zero.
 | 
						|
    //
 | 
						|
 | 
						|
    if ( targetDir.length () == 0 )
 | 
						|
    targetDir = Vec3<T> (0, 0, 1);
 | 
						|
 | 
						|
    //
 | 
						|
    // Ensure that the up direction is non-zero.
 | 
						|
    //
 | 
						|
 | 
						|
    if ( upDir.length () == 0 )
 | 
						|
    upDir = Vec3<T> (0, 1, 0);
 | 
						|
 | 
						|
    //
 | 
						|
    // Check for degeneracies.  If the upDir and targetDir are parallel
 | 
						|
    // or opposite, then compute a new, arbitrary up direction that is
 | 
						|
    // not parallel or opposite to the targetDir.
 | 
						|
    //
 | 
						|
 | 
						|
    if (upDir.cross (targetDir).length () == 0)
 | 
						|
    {
 | 
						|
    upDir = targetDir.cross (Vec3<T> (1, 0, 0));
 | 
						|
    if (upDir.length() == 0)
 | 
						|
        upDir = targetDir.cross(Vec3<T> (0, 0, 1));
 | 
						|
    }
 | 
						|
 | 
						|
    //
 | 
						|
    // Compute the x-, y-, and z-axis vectors of the new coordinate system.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> targetPerpDir = upDir.cross (targetDir);
 | 
						|
    Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
 | 
						|
 | 
						|
    //
 | 
						|
    // Rotate the x-axis into targetPerpDir (row 0),
 | 
						|
    // rotate the y-axis into targetUpDir   (row 1),
 | 
						|
    // rotate the z-axis into targetDir     (row 2).
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> row[3];
 | 
						|
    row[0] = targetPerpDir.normalized ();
 | 
						|
    row[1] = targetUpDir  .normalized ();
 | 
						|
    row[2] = targetDir    .normalized ();
 | 
						|
 | 
						|
    result.x[0][0] = row[0][0];
 | 
						|
    result.x[0][1] = row[0][1];
 | 
						|
    result.x[0][2] = row[0][2];
 | 
						|
    result.x[0][3] = (T)0;
 | 
						|
 | 
						|
    result.x[1][0] = row[1][0];
 | 
						|
    result.x[1][1] = row[1][1];
 | 
						|
    result.x[1][2] = row[1][2];
 | 
						|
    result.x[1][3] = (T)0;
 | 
						|
 | 
						|
    result.x[2][0] = row[2][0];
 | 
						|
    result.x[2][1] = row[2][1];
 | 
						|
    result.x[2][2] = row[2][2];
 | 
						|
    result.x[2][3] = (T)0;
 | 
						|
 | 
						|
    result.x[3][0] = (T)0;
 | 
						|
    result.x[3][1] = (T)0;
 | 
						|
    result.x[3][2] = (T)0;
 | 
						|
    result.x[3][3] = (T)1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis
 | 
						|
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis.
 | 
						|
// Inputs are :
 | 
						|
//     -the position of the frame
 | 
						|
//     -the x axis direction of the frame
 | 
						|
//     -a normal to the y axis of the frame
 | 
						|
// Return is the orthonormal frame
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
computeLocalFrame( const Vec3<T>& p,
 | 
						|
                   const Vec3<T>& xDir,
 | 
						|
                   const Vec3<T>& normal)
 | 
						|
{
 | 
						|
    Vec3<T> _xDir(xDir);
 | 
						|
    Vec3<T> x = _xDir.normalize();
 | 
						|
    Vec3<T> y = (normal % x).normalize();
 | 
						|
    Vec3<T> z = (x % y).normalize();
 | 
						|
 | 
						|
    Matrix44<T> L;
 | 
						|
    L[0][0] = x[0];
 | 
						|
    L[0][1] = x[1];
 | 
						|
    L[0][2] = x[2];
 | 
						|
    L[0][3] = 0.0;
 | 
						|
 | 
						|
    L[1][0] = y[0];
 | 
						|
    L[1][1] = y[1];
 | 
						|
    L[1][2] = y[2];
 | 
						|
    L[1][3] = 0.0;
 | 
						|
 | 
						|
    L[2][0] = z[0];
 | 
						|
    L[2][1] = z[1];
 | 
						|
    L[2][2] = z[2];
 | 
						|
    L[2][3] = 0.0;
 | 
						|
 | 
						|
    L[3][0] = p[0];
 | 
						|
    L[3][1] = p[1];
 | 
						|
    L[3][2] = p[2];
 | 
						|
    L[3][3] = 1.0;
 | 
						|
 | 
						|
    return L;
 | 
						|
}
 | 
						|
 | 
						|
// Add a translate/rotate/scale offset to an input frame
 | 
						|
// and put it in another frame of reference
 | 
						|
// Inputs are :
 | 
						|
//     - input frame
 | 
						|
//     - translate offset
 | 
						|
//     - rotate    offset in degrees
 | 
						|
//     - scale     offset
 | 
						|
//     - frame of reference
 | 
						|
// Output is the offsetted frame
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
addOffset( const Matrix44<T>& inMat,
 | 
						|
           const Vec3<T>&     tOffset,
 | 
						|
           const Vec3<T>&     rOffset,
 | 
						|
           const Vec3<T>&     sOffset,
 | 
						|
           const Matrix44<T>& ref)
 | 
						|
{
 | 
						|
    Matrix44<T> O;
 | 
						|
 | 
						|
    Vec3<T> _rOffset(rOffset);
 | 
						|
    _rOffset *= M_PI / 180.0;
 | 
						|
    O.rotate (_rOffset);
 | 
						|
 | 
						|
    O[3][0] = tOffset[0];
 | 
						|
    O[3][1] = tOffset[1];
 | 
						|
    O[3][2] = tOffset[2];
 | 
						|
 | 
						|
    Matrix44<T> S;
 | 
						|
    S.scale (sOffset);
 | 
						|
 | 
						|
    Matrix44<T> X = S * O * inMat * ref;
 | 
						|
 | 
						|
    return X;
 | 
						|
}
 | 
						|
 | 
						|
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B
 | 
						|
// Inputs are :
 | 
						|
//      -keepRotateA : if true keep rotate from matrix A, use B otherwise
 | 
						|
//      -keepScaleA  : if true keep scale  from matrix A, use B otherwise
 | 
						|
//      -Matrix A
 | 
						|
//      -Matrix B
 | 
						|
// Return Matrix A with tweaked rotation/scale
 | 
						|
template <class T>
 | 
						|
Matrix44<T>
 | 
						|
computeRSMatrix( bool               keepRotateA,
 | 
						|
                 bool               keepScaleA,
 | 
						|
                 const Matrix44<T>& A,
 | 
						|
                 const Matrix44<T>& B)
 | 
						|
{
 | 
						|
    Vec3<T> as, ah, ar, at;
 | 
						|
    extractSHRT (A, as, ah, ar, at);
 | 
						|
 | 
						|
    Vec3<T> bs, bh, br, bt;
 | 
						|
    extractSHRT (B, bs, bh, br, bt);
 | 
						|
 | 
						|
    if (!keepRotateA)
 | 
						|
        ar = br;
 | 
						|
 | 
						|
    if (!keepScaleA)
 | 
						|
        as = bs;
 | 
						|
 | 
						|
    Matrix44<T> mat;
 | 
						|
    mat.makeIdentity();
 | 
						|
    mat.translate (at);
 | 
						|
    mat.rotate (ar);
 | 
						|
    mat.scale (as);
 | 
						|
 | 
						|
    return mat;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//-----------------------------------------------------------------------------
 | 
						|
// Implementation for 3x3 Matrix
 | 
						|
//------------------------------
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
 | 
						|
{
 | 
						|
    T shr;
 | 
						|
    Matrix33<T> M (mat);
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix33<T>
 | 
						|
sansScaling (const Matrix33<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec2<T> scl;
 | 
						|
    T shr;
 | 
						|
    T rot;
 | 
						|
    Vec2<T> tran;
 | 
						|
 | 
						|
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | 
						|
    return mat;
 | 
						|
 | 
						|
    Matrix33<T> M;
 | 
						|
 | 
						|
    M.translate (tran);
 | 
						|
    M.rotate (rot);
 | 
						|
    M.shear (shr);
 | 
						|
 | 
						|
    return M;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
removeScaling (Matrix33<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec2<T> scl;
 | 
						|
    T shr;
 | 
						|
    T rot;
 | 
						|
    Vec2<T> tran;
 | 
						|
 | 
						|
    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    mat.makeIdentity ();
 | 
						|
    mat.translate (tran);
 | 
						|
    mat.rotate (rot);
 | 
						|
    mat.shear (shr);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
 | 
						|
{
 | 
						|
    Matrix33<T> M (mat);
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix33<T>
 | 
						|
sansScalingAndShear (const Matrix33<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec2<T> scl;
 | 
						|
    T shr;
 | 
						|
    Matrix33<T> M (mat);
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
 | 
						|
    return mat;
 | 
						|
 | 
						|
    return M;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
removeScalingAndShear (Matrix33<T> &mat, bool exc)
 | 
						|
{
 | 
						|
    Vec2<T> scl;
 | 
						|
    T shr;
 | 
						|
 | 
						|
    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractAndRemoveScalingAndShear (Matrix33<T> &mat,
 | 
						|
                 Vec2<T> &scl, T &shr, bool exc)
 | 
						|
{
 | 
						|
    Vec2<T> row[2];
 | 
						|
 | 
						|
    row[0] = Vec2<T> (mat[0][0], mat[0][1]);
 | 
						|
    row[1] = Vec2<T> (mat[1][0], mat[1][1]);
 | 
						|
 | 
						|
    T maxVal = 0;
 | 
						|
    for (int i=0; i < 2; i++)
 | 
						|
    for (int j=0; j < 2; j++)
 | 
						|
        if (Imath::abs (row[i][j]) > maxVal)
 | 
						|
        maxVal = Imath::abs (row[i][j]);
 | 
						|
 | 
						|
    //
 | 
						|
    // We normalize the 2x2 matrix here.
 | 
						|
    // It was noticed that this can improve numerical stability significantly,
 | 
						|
    // especially when many of the upper 2x2 matrix's coefficients are very
 | 
						|
    // close to zero; we correct for this step at the end by multiplying the
 | 
						|
    // scaling factors by maxVal at the end (shear and rotation are not
 | 
						|
    // affected by the normalization).
 | 
						|
 | 
						|
    if (maxVal != 0)
 | 
						|
    {
 | 
						|
    for (int i=0; i < 2; i++)
 | 
						|
        if (! checkForZeroScaleInRow (maxVal, row[i], exc))
 | 
						|
        return false;
 | 
						|
        else
 | 
						|
        row[i] /= maxVal;
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute X scale factor.
 | 
						|
    scl.x = row[0].length ();
 | 
						|
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    // Normalize first row.
 | 
						|
    row[0] /= scl.x;
 | 
						|
 | 
						|
    // An XY shear factor will shear the X coord. as the Y coord. changes.
 | 
						|
    // There are 2 combinations (XY, YX), although we only extract the XY
 | 
						|
    // shear factor because we can effect the an YX shear factor by
 | 
						|
    // shearing in XY combined with rotations and scales.
 | 
						|
    //
 | 
						|
    // shear matrix <   1,  YX,  0,
 | 
						|
    //                 XY,   1,  0,
 | 
						|
    //                  0,   0,  1 >
 | 
						|
 | 
						|
    // Compute XY shear factor and make 2nd row orthogonal to 1st.
 | 
						|
    shr     = row[0].dot (row[1]);
 | 
						|
    row[1] -= shr * row[0];
 | 
						|
 | 
						|
    // Now, compute Y scale.
 | 
						|
    scl.y = row[1].length ();
 | 
						|
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    // Normalize 2nd row and correct the XY shear factor for Y scaling.
 | 
						|
    row[1] /= scl.y;
 | 
						|
    shr    /= scl.y;
 | 
						|
 | 
						|
    // At this point, the upper 2x2 matrix in mat is orthonormal.
 | 
						|
    // Check for a coordinate system flip. If the determinant
 | 
						|
    // is -1, then flip the rotation matrix and adjust the scale(Y)
 | 
						|
    // and shear(XY) factors to compensate.
 | 
						|
    if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
 | 
						|
    {
 | 
						|
    row[1][0] *= -1;
 | 
						|
    row[1][1] *= -1;
 | 
						|
    scl[1] *= -1;
 | 
						|
    shr *= -1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy over the orthonormal rows into the returned matrix.
 | 
						|
    // The upper 2x2 matrix in mat is now a rotation matrix.
 | 
						|
    for (int i=0; i < 2; i++)
 | 
						|
    {
 | 
						|
    mat[i][0] = row[i][0];
 | 
						|
    mat[i][1] = row[i][1];
 | 
						|
    }
 | 
						|
 | 
						|
    scl *= maxVal;
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
void
 | 
						|
extractEuler (const Matrix33<T> &mat, T &rot)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Normalize the local x and y axes to remove scaling.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec2<T> i (mat[0][0], mat[0][1]);
 | 
						|
    Vec2<T> j (mat[1][0], mat[1][1]);
 | 
						|
 | 
						|
    i.normalize();
 | 
						|
    j.normalize();
 | 
						|
 | 
						|
    //
 | 
						|
    // Extract the angle, rot.
 | 
						|
    //
 | 
						|
 | 
						|
    rot = - Math<T>::atan2 (j[0], i[0]);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
extractSHRT (const Matrix33<T> &mat,
 | 
						|
         Vec2<T> &s,
 | 
						|
         T       &h,
 | 
						|
         T       &r,
 | 
						|
         Vec2<T> &t,
 | 
						|
         bool    exc)
 | 
						|
{
 | 
						|
    Matrix33<T> rot;
 | 
						|
 | 
						|
    rot = mat;
 | 
						|
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
 | 
						|
    return false;
 | 
						|
 | 
						|
    extractEuler (rot, r);
 | 
						|
 | 
						|
    t.x = mat[2][0];
 | 
						|
    t.y = mat[2][1];
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
checkForZeroScaleInRow (const T& scl,
 | 
						|
            const Vec2<T> &row,
 | 
						|
            bool exc /* = true */ )
 | 
						|
{
 | 
						|
    for (int i = 0; i < 2; i++)
 | 
						|
    {
 | 
						|
    if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
 | 
						|
    {
 | 
						|
        if (exc)
 | 
						|
        throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
 | 
						|
                       "from matrix.");
 | 
						|
        else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Matrix33<T>
 | 
						|
outerProduct (const Vec3<T> &a, const Vec3<T> &b )
 | 
						|
{
 | 
						|
    return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z,
 | 
						|
                        a.y*b.x, a.y*b.y, a.y*b.z,
 | 
						|
                        a.z*b.x, a.z*b.y, a.z*b.z );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Computes the translation and rotation that brings the 'from' points
 | 
						|
// as close as possible to the 'to' points under the Frobenius norm.
 | 
						|
// To be more specific, let x be the matrix of 'from' points and y be
 | 
						|
// the matrix of 'to' points, we want to find the matrix A of the form
 | 
						|
//    [ R t ]
 | 
						|
//    [ 0 1 ]
 | 
						|
// that minimizes
 | 
						|
//     || (A*x - y)^T * W * (A*x - y) ||_F
 | 
						|
// If doScaling is true, then a uniform scale is allowed also.
 | 
						|
template <typename T>
 | 
						|
Imath::M44d
 | 
						|
procrustesRotationAndTranslation (const Imath::Vec3<T>* A,  // From these
 | 
						|
                                  const Imath::Vec3<T>* B,  // To these
 | 
						|
                                  const T* weights,
 | 
						|
                                  const size_t numPoints,
 | 
						|
                                  const bool doScaling = false);
 | 
						|
 | 
						|
// Unweighted:
 | 
						|
template <typename T>
 | 
						|
Imath::M44d
 | 
						|
procrustesRotationAndTranslation (const Imath::Vec3<T>* A,
 | 
						|
                                  const Imath::Vec3<T>* B,
 | 
						|
                                  const size_t numPoints,
 | 
						|
                                  const bool doScaling = false);
 | 
						|
 | 
						|
// Compute the SVD of a 3x3 matrix using Jacobi transformations.  This method
 | 
						|
// should be quite accurate (competitive with LAPACK) even for poorly
 | 
						|
// conditioned matrices, and because it has been written specifically for the
 | 
						|
// 3x3/4x4 case it is much faster than calling out to LAPACK.
 | 
						|
//
 | 
						|
// The SVD of a 3x3/4x4 matrix A is defined as follows:
 | 
						|
//     A = U * S * V^T
 | 
						|
// where S is the diagonal matrix of singular values and both U and V are
 | 
						|
// orthonormal.  By convention, the entries S are all positive and sorted from
 | 
						|
// the largest to the smallest.  However, some uses of this function may
 | 
						|
// require that the matrix U*V^T have positive determinant; in this case, we
 | 
						|
// may make the smallest singular value negative to ensure that this is
 | 
						|
// satisfied.
 | 
						|
//
 | 
						|
// Currently only available for single- and double-precision matrices.
 | 
						|
template <typename T>
 | 
						|
void
 | 
						|
jacobiSVD (const Imath::Matrix33<T>& A,
 | 
						|
           Imath::Matrix33<T>& U,
 | 
						|
           Imath::Vec3<T>& S,
 | 
						|
           Imath::Matrix33<T>& V,
 | 
						|
           const T tol = Imath::limits<T>::epsilon(),
 | 
						|
           const bool forcePositiveDeterminant = false);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void
 | 
						|
jacobiSVD (const Imath::Matrix44<T>& A,
 | 
						|
           Imath::Matrix44<T>& U,
 | 
						|
           Imath::Vec4<T>& S,
 | 
						|
           Imath::Matrix44<T>& V,
 | 
						|
           const T tol = Imath::limits<T>::epsilon(),
 | 
						|
           const bool forcePositiveDeterminant = false);
 | 
						|
 | 
						|
// Compute the eigenvalues (S) and the eigenvectors (V) of
 | 
						|
// a real symmetric matrix using Jacobi transformation.
 | 
						|
//
 | 
						|
// Jacobi transformation of a 3x3/4x4 matrix A outputs S and V:
 | 
						|
// 	A = V * S * V^T
 | 
						|
// where V is orthonormal and S is the diagonal matrix of eigenvalues.
 | 
						|
// Input matrix A must be symmetric. A is also modified during
 | 
						|
// the computation so that upper diagonal entries of A become zero.
 | 
						|
//
 | 
						|
template <typename T>
 | 
						|
void
 | 
						|
jacobiEigenSolver (Matrix33<T>& A,
 | 
						|
                   Vec3<T>& S,
 | 
						|
                   Matrix33<T>& V,
 | 
						|
                   const T tol);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline
 | 
						|
void
 | 
						|
jacobiEigenSolver (Matrix33<T>& A,
 | 
						|
                   Vec3<T>& S,
 | 
						|
                   Matrix33<T>& V)
 | 
						|
{
 | 
						|
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
void
 | 
						|
jacobiEigenSolver (Matrix44<T>& A,
 | 
						|
                   Vec4<T>& S,
 | 
						|
                   Matrix44<T>& V,
 | 
						|
                   const T tol);
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline
 | 
						|
void
 | 
						|
jacobiEigenSolver (Matrix44<T>& A,
 | 
						|
                   Vec4<T>& S,
 | 
						|
                   Matrix44<T>& V)
 | 
						|
{
 | 
						|
    jacobiEigenSolver(A,S,V,limits<T>::epsilon());
 | 
						|
}
 | 
						|
 | 
						|
// Compute a eigenvector corresponding to the abs max/min eigenvalue
 | 
						|
// of a real symmetric matrix using Jacobi transformation.
 | 
						|
template <typename TM, typename TV>
 | 
						|
void
 | 
						|
maxEigenVector (TM& A, TV& S);
 | 
						|
template <typename TM, typename TV>
 | 
						|
void
 | 
						|
minEigenVector (TM& A, TV& S);
 | 
						|
 | 
						|
} // namespace Imath
 | 
						|
 | 
						|
#endif
 |