288 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | 
						|
// Digital Ltd. LLC
 | 
						|
//
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
// *       Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
// *       Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
// *       Neither the name of Industrial Light & Magic nor the names of
 | 
						|
// its contributors may be used to endorse or promote products derived
 | 
						|
// from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
//
 | 
						|
///////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#ifndef INCLUDED_IMATHLINEALGO_H
 | 
						|
#define INCLUDED_IMATHLINEALGO_H
 | 
						|
 | 
						|
//------------------------------------------------------------------
 | 
						|
//
 | 
						|
//	This file contains algorithms applied to or in conjunction
 | 
						|
//	with lines (Imath::Line). These algorithms may require
 | 
						|
//	more headers to compile. The assumption made is that these
 | 
						|
//	functions are called much less often than the basic line
 | 
						|
//	functions or these functions require more support classes
 | 
						|
//
 | 
						|
//	Contains:
 | 
						|
//
 | 
						|
//	bool closestPoints(const Line<T>& line1,
 | 
						|
//			   const Line<T>& line2,
 | 
						|
//			   Vec3<T>& point1,
 | 
						|
//			   Vec3<T>& point2)
 | 
						|
//
 | 
						|
//	bool intersect( const Line3<T> &line,
 | 
						|
//			const Vec3<T> &v0,
 | 
						|
//			const Vec3<T> &v1,
 | 
						|
//			const Vec3<T> &v2,
 | 
						|
//			Vec3<T> &pt,
 | 
						|
//			Vec3<T> &barycentric,
 | 
						|
//			bool &front)
 | 
						|
//
 | 
						|
//      V3f
 | 
						|
//      closestVertex(const Vec3<T> &v0,
 | 
						|
//                    const Vec3<T> &v1,
 | 
						|
//                    const Vec3<T> &v2,
 | 
						|
//                    const Line3<T> &l)
 | 
						|
//
 | 
						|
//	V3f
 | 
						|
//	rotatePoint(const Vec3<T> p, Line3<T> l, float angle)
 | 
						|
//
 | 
						|
//------------------------------------------------------------------
 | 
						|
 | 
						|
#include "ImathLine.h"
 | 
						|
#include "ImathVecAlgo.h"
 | 
						|
#include "ImathFun.h"
 | 
						|
 | 
						|
namespace Imath {
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
closestPoints
 | 
						|
    (const Line3<T>& line1,
 | 
						|
     const Line3<T>& line2,
 | 
						|
     Vec3<T>& point1,
 | 
						|
     Vec3<T>& point2)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Compute point1 and point2 such that point1 is on line1, point2
 | 
						|
    // is on line2 and the distance between point1 and point2 is minimal.
 | 
						|
    // This function returns true if point1 and point2 can be computed,
 | 
						|
    // or false if line1 and line2 are parallel or nearly parallel.
 | 
						|
    // This function assumes that line1.dir and line2.dir are normalized.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> w = line1.pos - line2.pos;
 | 
						|
    T d1w = line1.dir ^ w;
 | 
						|
    T d2w = line2.dir ^ w;
 | 
						|
    T d1d2 = line1.dir ^ line2.dir;
 | 
						|
    T n1 = d1d2 * d2w - d1w;
 | 
						|
    T n2 = d2w - d1d2 * d1w;
 | 
						|
    T d = 1 - d1d2 * d1d2;
 | 
						|
    T absD = abs (d);
 | 
						|
 | 
						|
    if ((absD > 1) ||
 | 
						|
    (abs (n1) < limits<T>::max() * absD &&
 | 
						|
     abs (n2) < limits<T>::max() * absD))
 | 
						|
    {
 | 
						|
    point1 = line1 (n1 / d);
 | 
						|
    point2 = line2 (n2 / d);
 | 
						|
    return true;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
    return false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
bool
 | 
						|
intersect
 | 
						|
    (const Line3<T> &line,
 | 
						|
     const Vec3<T> &v0,
 | 
						|
     const Vec3<T> &v1,
 | 
						|
     const Vec3<T> &v2,
 | 
						|
     Vec3<T> &pt,
 | 
						|
     Vec3<T> &barycentric,
 | 
						|
     bool &front)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Given a line and a triangle (v0, v1, v2), the intersect() function
 | 
						|
    // finds the intersection of the line and the plane that contains the
 | 
						|
    // triangle.
 | 
						|
    //
 | 
						|
    // If the intersection point cannot be computed, either because the
 | 
						|
    // line and the triangle's plane are nearly parallel or because the
 | 
						|
    // triangle's area is very small, intersect() returns false.
 | 
						|
    //
 | 
						|
    // If the intersection point is outside the triangle, intersect
 | 
						|
    // returns false.
 | 
						|
    //
 | 
						|
    // If the intersection point, pt, is inside the triangle, intersect()
 | 
						|
    // computes a front-facing flag and the barycentric coordinates of
 | 
						|
    // the intersection point, and returns true.
 | 
						|
    //
 | 
						|
    // The front-facing flag is true if the dot product of the triangle's
 | 
						|
    // normal, (v2-v1)%(v1-v0), and the line's direction is negative.
 | 
						|
    //
 | 
						|
    // The barycentric coordinates have the following property:
 | 
						|
    //
 | 
						|
    //     pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> edge0 = v1 - v0;
 | 
						|
    Vec3<T> edge1 = v2 - v1;
 | 
						|
    Vec3<T> normal = edge1 % edge0;
 | 
						|
 | 
						|
    T l = normal.length();
 | 
						|
 | 
						|
    if (l != 0)
 | 
						|
    normal /= l;
 | 
						|
    else
 | 
						|
    return false;	// zero-area triangle
 | 
						|
 | 
						|
    //
 | 
						|
    // d is the distance of line.pos from the plane that contains the triangle.
 | 
						|
    // The intersection point is at line.pos + (d/nd) * line.dir.
 | 
						|
    //
 | 
						|
 | 
						|
    T d = normal ^ (v0 - line.pos);
 | 
						|
    T nd = normal ^ line.dir;
 | 
						|
 | 
						|
    if (abs (nd) > 1 || abs (d) < limits<T>::max() * abs (nd))
 | 
						|
    pt = line (d / nd);
 | 
						|
    else
 | 
						|
    return false;  // line and plane are nearly parallel
 | 
						|
 | 
						|
    //
 | 
						|
    // Compute the barycentric coordinates of the intersection point.
 | 
						|
    // The intersection is inside the triangle if all three barycentric
 | 
						|
    // coordinates are between zero and one.
 | 
						|
    //
 | 
						|
 | 
						|
    {
 | 
						|
    Vec3<T> en = edge0.normalized();
 | 
						|
    Vec3<T> a = pt - v0;
 | 
						|
    Vec3<T> b = v2 - v0;
 | 
						|
    Vec3<T> c = (a - en * (en ^ a));
 | 
						|
    Vec3<T> d = (b - en * (en ^ b));
 | 
						|
    T e = c ^ d;
 | 
						|
    T f = d ^ d;
 | 
						|
 | 
						|
    if (e >= 0 && e <= f)
 | 
						|
        barycentric.z = e / f;
 | 
						|
    else
 | 
						|
        return false; // outside
 | 
						|
    }
 | 
						|
 | 
						|
    {
 | 
						|
    Vec3<T> en = edge1.normalized();
 | 
						|
    Vec3<T> a = pt - v1;
 | 
						|
    Vec3<T> b = v0 - v1;
 | 
						|
    Vec3<T> c = (a - en * (en ^ a));
 | 
						|
    Vec3<T> d = (b - en * (en ^ b));
 | 
						|
    T e = c ^ d;
 | 
						|
    T f = d ^ d;
 | 
						|
 | 
						|
    if (e >= 0 && e <= f)
 | 
						|
        barycentric.x = e / f;
 | 
						|
    else
 | 
						|
        return false; // outside
 | 
						|
    }
 | 
						|
 | 
						|
    barycentric.y = 1 - barycentric.x - barycentric.z;
 | 
						|
 | 
						|
    if (barycentric.y < 0)
 | 
						|
    return false; // outside
 | 
						|
 | 
						|
    front = ((line.dir ^ normal) < 0);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Vec3<T>
 | 
						|
closestVertex
 | 
						|
    (const Vec3<T> &v0,
 | 
						|
     const Vec3<T> &v1,
 | 
						|
     const Vec3<T> &v2,
 | 
						|
     const Line3<T> &l)
 | 
						|
{
 | 
						|
    Vec3<T> nearest = v0;
 | 
						|
    T neardot       = (v0 - l.closestPointTo(v0)).length2();
 | 
						|
 | 
						|
    T tmp           = (v1 - l.closestPointTo(v1)).length2();
 | 
						|
 | 
						|
    if (tmp < neardot)
 | 
						|
    {
 | 
						|
        neardot = tmp;
 | 
						|
        nearest = v1;
 | 
						|
    }
 | 
						|
 | 
						|
    tmp = (v2 - l.closestPointTo(v2)).length2();
 | 
						|
    if (tmp < neardot)
 | 
						|
    {
 | 
						|
        neardot = tmp;
 | 
						|
        nearest = v2;
 | 
						|
    }
 | 
						|
 | 
						|
    return nearest;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <class T>
 | 
						|
Vec3<T>
 | 
						|
rotatePoint (const Vec3<T> p, Line3<T> l, T angle)
 | 
						|
{
 | 
						|
    //
 | 
						|
    // Rotate the point p around the line l by the given angle.
 | 
						|
    //
 | 
						|
 | 
						|
    //
 | 
						|
    // Form a coordinate frame with <x,y,a>. The rotation is the in xy
 | 
						|
    // plane.
 | 
						|
    //
 | 
						|
 | 
						|
    Vec3<T> q = l.closestPointTo(p);
 | 
						|
    Vec3<T> x = p - q;
 | 
						|
    T radius = x.length();
 | 
						|
 | 
						|
    x.normalize();
 | 
						|
    Vec3<T> y = (x % l.dir).normalize();
 | 
						|
 | 
						|
    T cosangle = Math<T>::cos(angle);
 | 
						|
    T sinangle = Math<T>::sin(angle);
 | 
						|
 | 
						|
    Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle;
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
} // namespace Imath
 | 
						|
 | 
						|
#endif
 |