169 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| using cv::ml::SVM;
 | |
| using cv::ml::TrainData;
 | |
| 
 | |
| //--------------------------------------------------------------------------------------------
 | |
| class CV_SVMTrainAutoTest : public cvtest::BaseTest {
 | |
| public:
 | |
|     CV_SVMTrainAutoTest() {}
 | |
| protected:
 | |
|     virtual void run( int start_from );
 | |
| };
 | |
| 
 | |
| void CV_SVMTrainAutoTest::run( int /*start_from*/ )
 | |
| {
 | |
|     int datasize = 100;
 | |
|     cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
 | |
|     cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
 | |
| 
 | |
|     RNG rng(0);
 | |
|     for (int i = 0; i < datasize; ++i)
 | |
|     {
 | |
|         int response = rng.uniform(0, 2);  // Random from {0, 1}.
 | |
|         samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
 | |
|         samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
 | |
|         responses.at<int>( i, 0 ) = response;
 | |
|     }
 | |
| 
 | |
|     cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
 | |
|     cv::Ptr<SVM> svm = SVM::create();
 | |
|     svm->trainAuto( data, 10 );  // 2-fold cross validation.
 | |
| 
 | |
|     float test_data0[2] = {0.25f, 0.25f};
 | |
|     cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
 | |
|     float result0 = svm->predict( test_point0 );
 | |
|     float test_data1[2] = {0.75f, 0.75f};
 | |
|     cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
 | |
|     float result1 = svm->predict( test_point1 );
 | |
| 
 | |
|     if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 )
 | |
|     {
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|     }
 | |
| }
 | |
| 
 | |
| TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); }
 | |
| 
 | |
| 
 | |
| TEST(ML_SVM, trainAuto_regression_5369)
 | |
| {
 | |
|     int datasize = 100;
 | |
|     cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
 | |
|     cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
 | |
| 
 | |
|     RNG rng(0); // fixed!
 | |
|     for (int i = 0; i < datasize; ++i)
 | |
|     {
 | |
|         int response = rng.uniform(0, 2);  // Random from {0, 1}.
 | |
|         samples.at<float>( i, 0 ) = 0;
 | |
|         samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response;
 | |
|         responses.at<int>( i, 0 ) = response;
 | |
|     }
 | |
| 
 | |
|     cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
 | |
|     cv::Ptr<SVM> svm = SVM::create();
 | |
|     svm->trainAuto( data, 10 );  // 2-fold cross validation.
 | |
| 
 | |
|     float test_data0[2] = {0.25f, 0.25f};
 | |
|     cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
 | |
|     float result0 = svm->predict( test_point0 );
 | |
|     float test_data1[2] = {0.75f, 0.75f};
 | |
|     cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
 | |
|     float result1 = svm->predict( test_point1 );
 | |
| 
 | |
|     EXPECT_EQ(0., result0);
 | |
|     EXPECT_EQ(1., result1);
 | |
| }
 | |
| 
 | |
| class CV_SVMGetSupportVectorsTest : public cvtest::BaseTest {
 | |
| public:
 | |
|     CV_SVMGetSupportVectorsTest() {}
 | |
| protected:
 | |
|     virtual void run( int startFrom );
 | |
| };
 | |
| void CV_SVMGetSupportVectorsTest::run(int /*startFrom*/ )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
| 
 | |
|     // Set up training data
 | |
|     int labels[4] = {1, -1, -1, -1};
 | |
|     float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
 | |
|     Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
 | |
|     Mat labelsMat(4, 1, CV_32SC1, labels);
 | |
| 
 | |
|     Ptr<SVM> svm = SVM::create();
 | |
|     svm->setType(SVM::C_SVC);
 | |
|     svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
 | |
| 
 | |
| 
 | |
|     // Test retrieval of SVs and compressed SVs on linear SVM
 | |
|     svm->setKernel(SVM::LINEAR);
 | |
|     svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
 | |
| 
 | |
|     Mat sv = svm->getSupportVectors();
 | |
|     CV_Assert(sv.rows == 1);    // by default compressed SV returned
 | |
|     sv = svm->getUncompressedSupportVectors();
 | |
|     CV_Assert(sv.rows == 3);
 | |
| 
 | |
| 
 | |
|     // Test retrieval of SVs and compressed SVs on non-linear SVM
 | |
|     svm->setKernel(SVM::POLY);
 | |
|     svm->setDegree(2);
 | |
|     svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
 | |
| 
 | |
|     sv = svm->getSupportVectors();
 | |
|     CV_Assert(sv.rows == 3);
 | |
|     sv = svm->getUncompressedSupportVectors();
 | |
|     CV_Assert(sv.rows == 0);    // inapplicable for non-linear SVMs
 | |
| 
 | |
| 
 | |
|     ts->set_failed_test_info(code);
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST(ML_SVM, getSupportVectors) { CV_SVMGetSupportVectorsTest test; test.safe_run(); }
 | 
