opencv/modules/gpu/include/opencv2/gpu/gpu.hpp
2010-09-27 13:30:50 +00:00

748 lines
34 KiB
C++
Raw Blame History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_HPP__
#define __OPENCV_GPU_HPP__
#include <vector>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/gpu/devmem2d.hpp"
namespace cv
{
namespace gpu
{
//////////////////////////////// Initialization ////////////////////////
//! This is the only function that do not throw exceptions if the library is compiled without Cuda.
CV_EXPORTS int getCudaEnabledDeviceCount();
//! Functions below throw cv::Expception if the library is compiled without Cuda.
CV_EXPORTS string getDeviceName(int device);
CV_EXPORTS void setDevice(int device);
CV_EXPORTS int getDevice();
CV_EXPORTS void getComputeCapability(int device, int& major, int& minor);
CV_EXPORTS int getNumberOfSMs(int device);
CV_EXPORTS void getGpuMemInfo(size_t& free, size_t& total);
//////////////////////////////// GpuMat ////////////////////////////////
class Stream;
class CudaMem;
//! Smart pointer for GPU memory with reference counting. Its interface is mostly similar with cv::Mat.
class CV_EXPORTS GpuMat
{
public:
//! default constructor
GpuMat();
//! constructs GpuMatrix of the specified size and type
// (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
GpuMat(int _rows, int _cols, int _type);
GpuMat(Size _size, int _type);
//! constucts GpuMatrix and fills it with the specified value _s.
GpuMat(int _rows, int _cols, int _type, const Scalar& _s);
GpuMat(Size _size, int _type, const Scalar& _s);
//! copy constructor
GpuMat(const GpuMat& m);
//! constructor for GpuMatrix headers pointing to user-allocated data
GpuMat(int _rows, int _cols, int _type, void* _data, size_t _step = Mat::AUTO_STEP);
GpuMat(Size _size, int _type, void* _data, size_t _step = Mat::AUTO_STEP);
//! creates a matrix header for a part of the bigger matrix
GpuMat(const GpuMat& m, const Range& rowRange, const Range& colRange);
GpuMat(const GpuMat& m, const Rect& roi);
//! builds GpuMat from Mat. Perfom blocking upload to device.
explicit GpuMat (const Mat& m);
//! destructor - calls release()
~GpuMat();
//! assignment operators
GpuMat& operator = (const GpuMat& m);
//! assignment operator. Perfom blocking upload to device.
GpuMat& operator = (const Mat& m);
//! returns lightweight DevMem2D_ structure for passing to nvcc-compiled code.
// Contains just image size, data ptr and step.
template <class T> operator DevMem2D_<T>() const;
//! pefroms blocking upload data to GpuMat. .
void upload(const cv::Mat& m);
//! upload async
void upload(const CudaMem& m, Stream& stream);
//! downloads data from device to host memory. Blocking calls.
operator Mat() const;
void download(cv::Mat& m) const;
//! download async
void download(CudaMem& m, Stream& stream) const;
//! returns a new GpuMatrix header for the specified row
GpuMat row(int y) const;
//! returns a new GpuMatrix header for the specified column
GpuMat col(int x) const;
//! ... for the specified row span
GpuMat rowRange(int startrow, int endrow) const;
GpuMat rowRange(const Range& r) const;
//! ... for the specified column span
GpuMat colRange(int startcol, int endcol) const;
GpuMat colRange(const Range& r) const;
//! returns deep copy of the GpuMatrix, i.e. the data is copied
GpuMat clone() const;
//! copies the GpuMatrix content to "m".
// It calls m.create(this->size(), this->type()).
void copyTo( GpuMat& m ) const;
//! copies those GpuMatrix elements to "m" that are marked with non-zero mask elements.
void copyTo( GpuMat& m, const GpuMat& mask ) const;
//! converts GpuMatrix to another datatype with optional scalng. See cvConvertScale.
void convertTo( GpuMat& m, int rtype, double alpha=1, double beta=0 ) const;
void assignTo( GpuMat& m, int type=-1 ) const;
//! sets every GpuMatrix element to s
GpuMat& operator = (const Scalar& s);
//! sets some of the GpuMatrix elements to s, according to the mask
GpuMat& setTo(const Scalar& s, const GpuMat& mask=GpuMat());
//! creates alternative GpuMatrix header for the same data, with different
// number of channels and/or different number of rows. see cvReshape.
GpuMat reshape(int _cn, int _rows=0) const;
//! allocates new GpuMatrix data unless the GpuMatrix already has specified size and type.
// previous data is unreferenced if needed.
void create(int _rows, int _cols, int _type);
void create(Size _size, int _type);
//! decreases reference counter;
// deallocate the data when reference counter reaches 0.
void release();
//! swaps with other smart pointer
void swap(GpuMat& mat);
//! locates GpuMatrix header within a parent GpuMatrix. See below
void locateROI( Size& wholeSize, Point& ofs ) const;
//! moves/resizes the current GpuMatrix ROI inside the parent GpuMatrix.
GpuMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
//! extracts a rectangular sub-GpuMatrix
// (this is a generalized form of row, rowRange etc.)
GpuMat operator()( Range rowRange, Range colRange ) const;
GpuMat operator()( const Rect& roi ) const;
//! returns true iff the GpuMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
// similar to CV_IS_GpuMat_CONT(cvGpuMat->type)
bool isContinuous() const;
//! returns element size in bytes,
// similar to CV_ELEM_SIZE(cvMat->type)
size_t elemSize() const;
//! returns the size of element channel in bytes.
size_t elemSize1() const;
//! returns element type, similar to CV_MAT_TYPE(cvMat->type)
int type() const;
//! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
int depth() const;
//! returns element type, similar to CV_MAT_CN(cvMat->type)
int channels() const;
//! returns step/elemSize1()
size_t step1() const;
//! returns GpuMatrix size:
// width == number of columns, height == number of rows
Size size() const;
//! returns true if GpuMatrix data is NULL
bool empty() const;
//! returns pointer to y-th row
uchar* ptr(int y=0);
const uchar* ptr(int y=0) const;
//! template version of the above method
template<typename _Tp> _Tp* ptr(int y=0);
template<typename _Tp> const _Tp* ptr(int y=0) const;
//! matrix transposition
GpuMat t() const;
/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int flags;
//! the number of rows and columns
int rows, cols;
//! a distance between successive rows in bytes; includes the gap if any
size_t step;
//! pointer to the data
uchar* data;
//! pointer to the reference counter;
// when GpuMatrix points to user-allocated data, the pointer is NULL
int* refcount;
//! helper fields used in locateROI and adjustROI
uchar* datastart;
uchar* dataend;
};
//////////////////////////////// CudaMem ////////////////////////////////
// CudaMem is limited cv::Mat with page locked memory allocation.
// Page locked memory is only needed for async and faster coping to GPU.
// It is convertable to cv::Mat header without reference counting
// so you can use it with other opencv functions.
class CV_EXPORTS CudaMem
{
public:
enum { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 };
CudaMem();
CudaMem(const CudaMem& m);
CudaMem(int _rows, int _cols, int _type, int _alloc_type = ALLOC_PAGE_LOCKED);
CudaMem(Size _size, int _type, int _alloc_type = ALLOC_PAGE_LOCKED);
//! creates from cv::Mat with coping data
explicit CudaMem(const Mat& m, int _alloc_type = ALLOC_PAGE_LOCKED);
~CudaMem();
CudaMem& operator = (const CudaMem& m);
//! returns deep copy of the matrix, i.e. the data is copied
CudaMem clone() const;
//! allocates new matrix data unless the matrix already has specified size and type.
void create(int _rows, int _cols, int _type, int _alloc_type = ALLOC_PAGE_LOCKED);
void create(Size _size, int _type, int _alloc_type = ALLOC_PAGE_LOCKED);
//! decrements reference counter and released memory if needed.
void release();
//! returns matrix header with disabled reference counting for CudaMem data.
Mat createMatHeader() const;
operator Mat() const;
//! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware.
GpuMat createGpuMatHeader() const;
operator GpuMat() const;
//returns if host memory can be mapperd to gpu address space;
static bool can_device_map_to_host();
// Please see cv::Mat for descriptions
bool isContinuous() const;
size_t elemSize() const;
size_t elemSize1() const;
int type() const;
int depth() const;
int channels() const;
size_t step1() const;
Size size() const;
bool empty() const;
// Please see cv::Mat for descriptions
int flags;
int rows, cols;
size_t step;
uchar* data;
int* refcount;
uchar* datastart;
uchar* dataend;
int alloc_type;
};
//////////////////////////////// CudaStream ////////////////////////////////
// Encapculates Cuda Stream. Provides interface for async coping.
// Passed to each function that supports async kernel execution.
// Reference counting is enabled
class CV_EXPORTS Stream
{
public:
Stream();
~Stream();
Stream(const Stream&);
Stream& operator=(const Stream&);
bool queryIfComplete();
void waitForCompletion();
//! downloads asynchronously.
// Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat)
void enqueueDownload(const GpuMat& src, CudaMem& dst);
void enqueueDownload(const GpuMat& src, Mat& dst);
//! uploads asynchronously.
// Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI)
void enqueueUpload(const CudaMem& src, GpuMat& dst);
void enqueueUpload(const Mat& src, GpuMat& dst);
void enqueueCopy(const GpuMat& src, GpuMat& dst);
void enqueueMemSet(const GpuMat& src, Scalar val);
void enqueueMemSet(const GpuMat& src, Scalar val, const GpuMat& mask);
// converts matrix type, ex from float to uchar depending on type
void enqueueConvert(const GpuMat& src, GpuMat& dst, int type, double a = 1, double b = 0);
private:
void create();
void release();
struct Impl;
Impl *impl;
friend struct StreamAccessor;
};
////////////////////////////// Arithmetics ///////////////////////////////////
//! adds one matrix to another (c = a + b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! adds scalar to a matrix (c = a + s)
//! supports only CV_32FC1 type
CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! subtracts one matrix from another (c = a - b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! subtracts scalar from a matrix (c = a - s)
//! supports only CV_32FC1 type
CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! computes element-wise product of the two arrays (c = a * b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! multiplies matrix to a scalar (c = a * s)
//! supports only CV_32FC1 type
CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! computes element-wise quotient of the two arrays (c = a / b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! computes element-wise quotient of matrix and scalar (c = a / s)
//! supports only CV_32FC1 type
CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! transposes the matrix
//! supports only CV_8UC1 type
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst);
//! computes element-wise absolute difference of two arrays (c = abs(a - b))
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! computes element-wise absolute difference of array and scalar (c = abs(a - s))
//! supports only CV_32FC1 type
CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c);
//! compares elements of two arrays (c = a <cmpop> b)
//! supports CV_8UC4, CV_32FC1 types
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop);
//! computes mean value and standard deviation of all or selected array elements
//! supports only CV_8UC1 type
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
//! computes norm of array
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
//! computes norm of the difference between two arrays
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);
//! reverses the order of the rows, columns or both in a matrix
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode);
//! computes sum of array elements
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS Scalar sum(const GpuMat& m);
//! finds global minimum and maximum array elements and returns their values
//! supports only CV_8UC1 type
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal = 0);
//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
//! destination array will have the depth type as lut and the same channels number as source
//! supports CV_8UC1, CV_8UC3 types
CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays (async version)
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, const Stream& stream);
//! makes multi-channel array out of several single-channel arrays (async version)
CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst, const Stream& stream);
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst);
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst);
//! copies each plane of a multi-channel array to a dedicated array (async version)
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, const Stream& stream);
//! copies each plane of a multi-channel array to a dedicated array (async version)
CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst, const Stream& stream);
//! computes exponent of each matrix element (b = e**a)
//! supports only CV_32FC1 type
CV_EXPORTS void exp(const GpuMat& a, GpuMat& b);
//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
//! supports only CV_32FC1 type
CV_EXPORTS void log(const GpuMat& a, GpuMat& b);
//! computes magnitude (magnitude(i)) of each (x(i), y(i)) vector
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
////////////////////////////// Image processing //////////////////////////////
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.
//! supports CV_8UC1, CV_8UC3 source types and CV_32FC1 map type
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap);
//! Does mean shift filtering on GPU.
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
//! Supported types of input disparity: CV_8U, CV_16S.
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp);
//! Acync version
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, const Stream& stream);
//! Reprojects disparity image to 3D space.
//! Supports CV_8U and CV_16S types of input disparity.
//! The output is a 4-channel floating-point (CV_32FC4) matrix.
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q);
//! Acync version
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const Stream& stream);
//! converts image from one color space to another
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0);
//! Acync version
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn, const Stream& stream);
//! applies fixed threshold to the image.
//! Now supports only THRESH_TRUNC threshold type and one channels float source.
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh);
//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR);
//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR);
//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR);
//! rotate 8bit single or four channel image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR);
//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
//! supports CV_8UC1, CV_8UC4, CV_32SC1 types
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value = Scalar());
//! computes the integral image and integral for the squared image
//! sum will have CV_32S type, sqsum - CV32F type
//! supports only CV_32FC1 source type
CV_EXPORTS void integral(GpuMat& src, GpuMat& sum, GpuMat& sqsum);
//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types and kernel size 3, 5, 7
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1));
//! a synonym for normalized box filter
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1)) { boxFilter(src, dst, ksize, anchor); }
//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor, int iterations);
//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor, int iterations);
//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor, int iterations);
//////////////////////////////// StereoBM_GPU ////////////////////////////////
class CV_EXPORTS StereoBM_GPU
{
public:
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
//! the default constructor
StereoBM_GPU();
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
//! Output disparity has CV_8U type.
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! Acync version
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, const Stream & stream);
//! Some heuristics that tries to estmate
// if current GPU will be faster then CPU in this algorithm.
// It queries current active device.
static bool checkIfGpuCallReasonable();
int ndisp;
int winSize;
int preset;
// If avergeTexThreshold == 0 => post procesing is disabled
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
// i.e. input left image is low textured.
float avergeTexThreshold;
private:
GpuMat minSSD, leBuf, riBuf;
};
////////////////////////// StereoBeliefPropagation ///////////////////////////
// "Efficient Belief Propagation for Early Vision"
// P.Felzenszwalb
class CV_EXPORTS StereoBeliefPropagation
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_ITERS = 5 };
enum { DEFAULT_LEVELS = 5 };
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
//! the default constructor
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, truncation of data cost, data weight,
//! truncation of discontinuity cost and discontinuity single jump
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
//! please see paper for more details
StereoBeliefPropagation(int ndisp, int iters, int levels,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! Acync version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream);
//! version for user specified data term
void operator()(const GpuMat& data, GpuMat& disparity);
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream);
int ndisp;
int iters;
int levels;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int msg_type;
private:
GpuMat u, d, l, r, u2, d2, l2, r2;
std::vector<GpuMat> datas;
GpuMat out;
};
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
// Qingxiong Yang, Liang Wang<6E>, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS StereoConstantSpaceBP
{
public:
enum { DEFAULT_NDISP = 128 };
enum { DEFAULT_ITERS = 8 };
enum { DEFAULT_LEVELS = 4 };
enum { DEFAULT_NR_PLANE = 4 };
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
//! the default constructor
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int nr_plane = DEFAULT_NR_PLANE,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
int min_disp_th = 0,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! Acync version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream);
int ndisp;
int iters;
int levels;
int nr_plane;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int min_disp_th;
int msg_type;
bool use_local_init_data_cost;
private:
GpuMat u[2], d[2], l[2], r[2];
GpuMat disp_selected_pyr[2];
GpuMat data_cost;
GpuMat data_cost_selected;
GpuMat temp;
GpuMat out;
};
/////////////////////////// DisparityBilateralFilter ///////////////////////////
// Disparity map refinement using joint bilateral filtering given a single color image.
// Qingxiong Yang, Liang Wang<6E>, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS DisparityBilateralFilter
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_RADIUS = 3 };
enum { DEFAULT_ITERS = 1 };
//! the default constructor
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
//! the full constructor taking the number of disparities, filter radius,
//! number of iterations, truncation of data continuity, truncation of disparity continuity
//! and filter range sigma
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst);
//! Acync version
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream);
private:
int ndisp;
int radius;
int iters;
float edge_threshold;
float max_disc_threshold;
float sigma_range;
GpuMat table_color;
GpuMat table_space;
};
}
//! Speckle filtering - filters small connected components on diparity image.
//! It sets pixel (x,y) to newVal if it coresponds to small CC with size < maxSpeckleSize.
//! Threshold for border between CC is diffThreshold;
CV_EXPORTS void filterSpeckles( Mat& img, uchar newVal, int maxSpeckleSize, uchar diffThreshold, Mat& buf);
}
#include "opencv2/gpu/matrix_operations.hpp"
#endif /* __OPENCV_GPU_HPP__ */