91 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|  * @file MatchTemplate_Demo.cpp
 | |
|  * @brief Sample code to use the function MatchTemplate
 | |
|  * @author OpenCV team
 | |
|  */
 | |
| 
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| #include <iostream>
 | |
| #include <stdio.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| /// Global Variables
 | |
| Mat img; Mat templ; Mat result;
 | |
| const char* image_window = "Source Image";
 | |
| const char* result_window = "Result window";
 | |
| 
 | |
| int match_method;
 | |
| int max_Trackbar = 5;
 | |
| 
 | |
| /// Function Headers
 | |
| void MatchingMethod( int, void* );
 | |
| 
 | |
| /**
 | |
|  * @function main
 | |
|  */
 | |
| int main( int, char** argv )
 | |
| {
 | |
|   /// Load image and template
 | |
|   img = imread( argv[1], 1 );
 | |
|   templ = imread( argv[2], 1 );
 | |
| 
 | |
|   /// Create windows
 | |
|   namedWindow( image_window, WINDOW_AUTOSIZE );
 | |
|   namedWindow( result_window, WINDOW_AUTOSIZE );
 | |
| 
 | |
|   /// Create Trackbar
 | |
|   const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
 | |
|   createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
 | |
| 
 | |
|   MatchingMethod( 0, 0 );
 | |
| 
 | |
|   waitKey(0);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @function MatchingMethod
 | |
|  * @brief Trackbar callback
 | |
|  */
 | |
| void MatchingMethod( int, void* )
 | |
| {
 | |
|   /// Source image to display
 | |
|   Mat img_display;
 | |
|   img.copyTo( img_display );
 | |
| 
 | |
|   /// Create the result matrix
 | |
|   int result_cols =  img.cols - templ.cols + 1;
 | |
|   int result_rows = img.rows - templ.rows + 1;
 | |
| 
 | |
|   result.create( result_rows, result_cols, CV_32FC1 );
 | |
| 
 | |
|   /// Do the Matching and Normalize
 | |
|   matchTemplate( img, templ, result, match_method );
 | |
|   normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
 | |
| 
 | |
|   /// Localizing the best match with minMaxLoc
 | |
|   double minVal; double maxVal; Point minLoc; Point maxLoc;
 | |
|   Point matchLoc;
 | |
| 
 | |
|   minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
 | |
| 
 | |
| 
 | |
|   /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
 | |
|   if( match_method  == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
 | |
|     { matchLoc = minLoc; }
 | |
|   else
 | |
|     { matchLoc = maxLoc; }
 | |
| 
 | |
|   /// Show me what you got
 | |
|   rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
 | |
|   rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
 | |
| 
 | |
|   imshow( image_window, img_display );
 | |
|   imshow( result_window, result );
 | |
| 
 | |
|   return;
 | |
| }
 | 
