123 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			123 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Feature Detection
 | |
| =================
 | |
| 
 | |
| .. highlight:: cpp
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::CornernessCriteria
 | |
| ------------------------
 | |
| .. ocv:class:: cuda::CornernessCriteria : public Algorithm
 | |
| 
 | |
| Base class for Cornerness Criteria computation. ::
 | |
| 
 | |
|     class CV_EXPORTS CornernessCriteria : public Algorithm
 | |
|     {
 | |
|     public:
 | |
|         virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::CornernessCriteria::compute
 | |
| ---------------------------------
 | |
| Computes the cornerness criteria at each image pixel.
 | |
| 
 | |
| .. ocv:function:: void cuda::CornernessCriteria::compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param src: Source image.
 | |
| 
 | |
|     :param dst: Destination image containing cornerness values. It will have the same size as ``src`` and ``CV_32FC1`` type.
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::createHarrisCorner
 | |
| ------------------------
 | |
| Creates implementation for Harris cornerness criteria.
 | |
| 
 | |
| .. ocv:function:: Ptr<CornernessCriteria> cuda::createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101)
 | |
| 
 | |
|     :param srcType: Input source type. Only  ``CV_8UC1`` and  ``CV_32FC1`` are supported for now.
 | |
| 
 | |
|     :param blockSize: Neighborhood size.
 | |
| 
 | |
|     :param ksize: Aperture parameter for the Sobel operator.
 | |
| 
 | |
|     :param k: Harris detector free parameter.
 | |
| 
 | |
|     :param borderType: Pixel extrapolation method. Only  ``BORDER_REFLECT101`` and  ``BORDER_REPLICATE`` are supported for now.
 | |
| 
 | |
| .. seealso:: :ocv:func:`cornerHarris`
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::createMinEigenValCorner
 | |
| -----------------------------
 | |
| Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the cornerness criteria).
 | |
| 
 | |
| .. ocv:function:: Ptr<CornernessCriteria> cuda::createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101)
 | |
| 
 | |
|     :param srcType: Input source type. Only  ``CV_8UC1`` and  ``CV_32FC1`` are supported for now.
 | |
| 
 | |
|     :param blockSize: Neighborhood size.
 | |
| 
 | |
|     :param ksize: Aperture parameter for the Sobel operator.
 | |
| 
 | |
|     :param borderType: Pixel extrapolation method. Only  ``BORDER_REFLECT101`` and  ``BORDER_REPLICATE`` are supported for now.
 | |
| 
 | |
| .. seealso:: :ocv:func:`cornerMinEigenVal`
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::CornersDetector
 | |
| ---------------------
 | |
| .. ocv:class:: cuda::CornersDetector : public Algorithm
 | |
| 
 | |
| Base class for Corners Detector. ::
 | |
| 
 | |
|     class CV_EXPORTS CornersDetector : public Algorithm
 | |
|     {
 | |
|     public:
 | |
|         virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0;
 | |
|     };
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::CornersDetector::detect
 | |
| -----------------------------
 | |
| Determines strong corners on an image.
 | |
| 
 | |
| .. ocv:function:: void cuda::CornersDetector::detect(InputArray image, OutputArray corners, InputArray mask = noArray())
 | |
| 
 | |
|     :param image: Input 8-bit or floating-point 32-bit, single-channel image.
 | |
| 
 | |
|     :param corners: Output vector of detected corners (1-row matrix with CV_32FC2 type with corners positions).
 | |
| 
 | |
|     :param mask: Optional region of interest. If the image is not empty (it needs to have the type  ``CV_8UC1``  and the same size as  ``image`` ), it  specifies the region in which the corners are detected.
 | |
| 
 | |
| 
 | |
| 
 | |
| cuda::createGoodFeaturesToTrackDetector
 | |
| ---------------------------------------
 | |
| Creates implementation for :ocv:class:`cuda::CornersDetector` .
 | |
| 
 | |
| .. ocv:function:: Ptr<CornersDetector> cuda::createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04)
 | |
| 
 | |
|     :param srcType: Input source type. Only  ``CV_8UC1`` and  ``CV_32FC1`` are supported for now.
 | |
| 
 | |
|     :param maxCorners: Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned.
 | |
| 
 | |
|     :param qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see  :ocv:func:`cornerMinEigenVal` ) or the Harris function response (see  :ocv:func:`cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the  ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected.
 | |
| 
 | |
|     :param minDistance: Minimum possible Euclidean distance between the returned corners.
 | |
| 
 | |
|     :param blockSize: Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See  :ocv:func:`cornerEigenValsAndVecs` .
 | |
| 
 | |
|     :param useHarrisDetector: Parameter indicating whether to use a Harris detector (see :ocv:func:`cornerHarris`) or :ocv:func:`cornerMinEigenVal`.
 | |
| 
 | |
|     :param harrisK: Free parameter of the Harris detector.
 | |
| 
 | |
| .. seealso:: :ocv:func:`goodFeaturesToTrack`
 | 
