717 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			717 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                        Intel License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of Intel Corporation may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "test_precomp.hpp"
 | 
						|
#include "opencv2/highgui/highgui.hpp"
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
 | 
						|
const string IMAGE_TSUKUBA = "/features2d/tsukuba.png";
 | 
						|
const string IMAGE_BIKES = "/detectors_descriptors_evaluation/images_datasets/bikes/img1.png";
 | 
						|
 | 
						|
#if defined(HAVE_OPENCV_OCL) && 0 // unblock this to see SURF_OCL tests failures
 | 
						|
#define SURF_NAME "Feature2D.SURF_OCL"
 | 
						|
#else
 | 
						|
#define SURF_NAME "Feature2D.SURF"
 | 
						|
#endif
 | 
						|
 | 
						|
#define SHOW_DEBUG_LOG 0
 | 
						|
 | 
						|
static
 | 
						|
Mat generateHomography(float angle)
 | 
						|
{
 | 
						|
    // angle - rotation around Oz in degrees
 | 
						|
    float angleRadian = static_cast<float>(angle * CV_PI / 180);
 | 
						|
    Mat H = Mat::eye(3, 3, CV_32FC1);
 | 
						|
    H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
 | 
						|
    H.at<float>(0,1) = -std::sin(angleRadian);
 | 
						|
    H.at<float>(1,0) =  std::sin(angleRadian);
 | 
						|
 | 
						|
    return H;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
 | 
						|
{
 | 
						|
    // angle - rotation around Oz in degrees
 | 
						|
    float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
 | 
						|
    Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
 | 
						|
    LUShift.at<float>(0,2) = static_cast<float>(-srcImage.cols/2);
 | 
						|
    LUShift.at<float>(1,2) = static_cast<float>(-srcImage.rows/2);
 | 
						|
    Mat RDShift = Mat::eye(3, 3, CV_32FC1); // right down
 | 
						|
    RDShift.at<float>(0,2) = diag/2;
 | 
						|
    RDShift.at<float>(1,2) = diag/2;
 | 
						|
    Size sz(cvRound(diag), cvRound(diag));
 | 
						|
 | 
						|
    Mat srcMask(srcImage.size(), CV_8UC1, Scalar(255));
 | 
						|
 | 
						|
    Mat H = RDShift * generateHomography(angle) * LUShift;
 | 
						|
    warpPerspective(srcImage, dstImage, H, sz);
 | 
						|
    warpPerspective(srcMask, dstMask, H, sz);
 | 
						|
 | 
						|
    return H;
 | 
						|
}
 | 
						|
 | 
						|
void rotateKeyPoints(const vector<KeyPoint>& src, const Mat& H, float angle, vector<KeyPoint>& dst)
 | 
						|
{
 | 
						|
    // suppose that H is rotation given from rotateImage() and angle has value passed to rotateImage()
 | 
						|
    vector<Point2f> srcCenters, dstCenters;
 | 
						|
    KeyPoint::convert(src, srcCenters);
 | 
						|
 | 
						|
    perspectiveTransform(srcCenters, dstCenters, H);
 | 
						|
 | 
						|
    dst = src;
 | 
						|
    for(size_t i = 0; i < dst.size(); i++)
 | 
						|
    {
 | 
						|
        dst[i].pt = dstCenters[i];
 | 
						|
        float dstAngle = src[i].angle + angle;
 | 
						|
        if(dstAngle >= 360.f)
 | 
						|
            dstAngle -= 360.f;
 | 
						|
        dst[i].angle = dstAngle;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float scale)
 | 
						|
{
 | 
						|
    dst.resize(src.size());
 | 
						|
    for(size_t i = 0; i < src.size(); i++)
 | 
						|
        dst[i] = KeyPoint(src[i].pt.x * scale, src[i].pt.y * scale, src[i].size * scale, src[i].angle);
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
 | 
						|
{
 | 
						|
    float c = static_cast<float>(norm(p0 - p1)), sqr_c = c * c;
 | 
						|
 | 
						|
    float sqr_r0 = r0 * r0;
 | 
						|
    float sqr_r1 = r1 * r1;
 | 
						|
 | 
						|
    if(r0 + r1 <= c)
 | 
						|
       return 0;
 | 
						|
 | 
						|
    float minR = std::min(r0, r1);
 | 
						|
    float maxR = std::max(r0, r1);
 | 
						|
    if(c + minR <= maxR)
 | 
						|
        return static_cast<float>(CV_PI * minR * minR);
 | 
						|
 | 
						|
    float cos_halfA0 = (sqr_r0 + sqr_c - sqr_r1) / (2 * r0 * c);
 | 
						|
    float cos_halfA1 = (sqr_r1 + sqr_c - sqr_r0) / (2 * r1 * c);
 | 
						|
 | 
						|
    float A0 = 2 * acos(cos_halfA0);
 | 
						|
    float A1 = 2 * acos(cos_halfA1);
 | 
						|
 | 
						|
    return  0.5f * sqr_r0 * (A0 - sin(A0)) +
 | 
						|
            0.5f * sqr_r1 * (A1 - sin(A1));
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
 | 
						|
{
 | 
						|
    float intersectArea = calcCirclesIntersectArea(p0, r0, p1, r1);
 | 
						|
    float unionArea = static_cast<float>(CV_PI) * (r0 * r0 + r1 * r1) - intersectArea;
 | 
						|
    return intersectArea / unionArea;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
 | 
						|
                    const vector<KeyPoint>& keypoints1,
 | 
						|
                    vector<DMatch>& matches)
 | 
						|
{
 | 
						|
    vector<Point2f> points0;
 | 
						|
    KeyPoint::convert(keypoints0, points0);
 | 
						|
    Mat points0t;
 | 
						|
    if(H.empty())
 | 
						|
        points0t = Mat(points0);
 | 
						|
    else
 | 
						|
        perspectiveTransform(Mat(points0), points0t, H);
 | 
						|
 | 
						|
    matches.clear();
 | 
						|
    vector<uchar> usedMask(keypoints1.size(), 0);
 | 
						|
    for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
 | 
						|
    {
 | 
						|
        int nearestPointIndex = -1;
 | 
						|
        float maxIntersectRatio = 0.f;
 | 
						|
        const float r0 =  0.5f * keypoints0[i0].size;
 | 
						|
        for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
 | 
						|
        {
 | 
						|
            if(nearestPointIndex >= 0 && usedMask[i1])
 | 
						|
                continue;
 | 
						|
 | 
						|
            float r1 = 0.5f * keypoints1[i1].size;
 | 
						|
            float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
 | 
						|
                                                      keypoints1[i1].pt, r1);
 | 
						|
            if(intersectRatio > maxIntersectRatio)
 | 
						|
            {
 | 
						|
                maxIntersectRatio = intersectRatio;
 | 
						|
                nearestPointIndex = static_cast<int>(i1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
 | 
						|
        if(nearestPointIndex >= 0)
 | 
						|
            usedMask[nearestPointIndex] = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void removeVerySmallKeypoints(vector<KeyPoint>& keypoints)
 | 
						|
{
 | 
						|
    size_t i, j = 0, n = keypoints.size();
 | 
						|
    for( i = 0; i < n; i++ )
 | 
						|
    {
 | 
						|
        if( (keypoints[i].octave & 128) != 0 )
 | 
						|
            ;
 | 
						|
        else
 | 
						|
            keypoints[j++] = keypoints[i];
 | 
						|
    }
 | 
						|
    keypoints.resize(j);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class DetectorRotationInvarianceTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    DetectorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
 | 
						|
                                     float _minKeyPointMatchesRatio,
 | 
						|
                                     float _minAngleInliersRatio) :
 | 
						|
        featureDetector(_featureDetector),
 | 
						|
        minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
 | 
						|
        minAngleInliersRatio(_minAngleInliersRatio)
 | 
						|
    {
 | 
						|
        CV_Assert(!featureDetector.empty());
 | 
						|
    }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void run(int)
 | 
						|
    {
 | 
						|
        const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
 | 
						|
 | 
						|
        // Read test data
 | 
						|
        Mat image0 = imread(imageFilename), image1, mask1;
 | 
						|
        if(image0.empty())
 | 
						|
        {
 | 
						|
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
 | 
						|
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        vector<KeyPoint> keypoints0;
 | 
						|
        featureDetector->detect(image0, keypoints0);
 | 
						|
        removeVerySmallKeypoints(keypoints0);
 | 
						|
        if(keypoints0.size() < 15)
 | 
						|
            CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
 | 
						|
 | 
						|
        const int maxAngle = 360, angleStep = 15;
 | 
						|
        for(int angle = 0; angle < maxAngle; angle += angleStep)
 | 
						|
        {
 | 
						|
            Mat H = rotateImage(image0, static_cast<float>(angle), image1, mask1);
 | 
						|
 | 
						|
            vector<KeyPoint> keypoints1;
 | 
						|
            featureDetector->detect(image1, keypoints1, mask1);
 | 
						|
            removeVerySmallKeypoints(keypoints1);
 | 
						|
 | 
						|
            vector<DMatch> matches;
 | 
						|
            matchKeyPoints(keypoints0, H, keypoints1, matches);
 | 
						|
 | 
						|
            int angleInliersCount = 0;
 | 
						|
 | 
						|
            const float minIntersectRatio = 0.5f;
 | 
						|
            int keyPointMatchesCount = 0;
 | 
						|
            for(size_t m = 0; m < matches.size(); m++)
 | 
						|
            {
 | 
						|
                if(matches[m].distance < minIntersectRatio)
 | 
						|
                    continue;
 | 
						|
 | 
						|
                keyPointMatchesCount++;
 | 
						|
 | 
						|
                // Check does this inlier have consistent angles
 | 
						|
                const float maxAngleDiff = 15.f; // grad
 | 
						|
                float angle0 = keypoints0[matches[m].queryIdx].angle;
 | 
						|
                float angle1 = keypoints1[matches[m].trainIdx].angle;
 | 
						|
                if(angle0 == -1 || angle1 == -1)
 | 
						|
                    CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
 | 
						|
                CV_Assert(angle0 >= 0.f && angle0 < 360.f);
 | 
						|
                CV_Assert(angle1 >= 0.f && angle1 < 360.f);
 | 
						|
 | 
						|
                float rotAngle0 = angle0 + angle;
 | 
						|
                if(rotAngle0 >= 360.f)
 | 
						|
                    rotAngle0 -= 360.f;
 | 
						|
 | 
						|
                float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
 | 
						|
                angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
 | 
						|
                CV_Assert(angleDiff >= 0.f);
 | 
						|
                bool isAngleCorrect = angleDiff < maxAngleDiff;
 | 
						|
                if(isAngleCorrect)
 | 
						|
                    angleInliersCount++;
 | 
						|
            }
 | 
						|
 | 
						|
            float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
 | 
						|
            if(keyPointMatchesRatio < minKeyPointMatchesRatio)
 | 
						|
            {
 | 
						|
                ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
 | 
						|
                           keyPointMatchesRatio, minKeyPointMatchesRatio);
 | 
						|
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if(keyPointMatchesCount)
 | 
						|
            {
 | 
						|
                float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
 | 
						|
                if(angleInliersRatio < minAngleInliersRatio)
 | 
						|
                {
 | 
						|
                    ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
 | 
						|
                               angleInliersRatio, minAngleInliersRatio);
 | 
						|
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
            }
 | 
						|
#if SHOW_DEBUG_LOG
 | 
						|
            std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
 | 
						|
                << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        ts->set_failed_test_info( cvtest::TS::OK );
 | 
						|
    }
 | 
						|
 | 
						|
    Ptr<FeatureDetector> featureDetector;
 | 
						|
    float minKeyPointMatchesRatio;
 | 
						|
    float minAngleInliersRatio;
 | 
						|
};
 | 
						|
 | 
						|
class DescriptorRotationInvarianceTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    DescriptorRotationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
 | 
						|
                                     const Ptr<DescriptorExtractor>& _descriptorExtractor,
 | 
						|
                                     int _normType,
 | 
						|
                                     float _minDescInliersRatio) :
 | 
						|
        featureDetector(_featureDetector),
 | 
						|
        descriptorExtractor(_descriptorExtractor),
 | 
						|
        normType(_normType),
 | 
						|
        minDescInliersRatio(_minDescInliersRatio)
 | 
						|
    {
 | 
						|
        CV_Assert(!featureDetector.empty());
 | 
						|
        CV_Assert(!descriptorExtractor.empty());
 | 
						|
    }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void run(int)
 | 
						|
    {
 | 
						|
        const string imageFilename = string(ts->get_data_path()) + IMAGE_TSUKUBA;
 | 
						|
 | 
						|
        // Read test data
 | 
						|
        Mat image0 = imread(imageFilename), image1, mask1;
 | 
						|
        if(image0.empty())
 | 
						|
        {
 | 
						|
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
 | 
						|
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        vector<KeyPoint> keypoints0;
 | 
						|
        Mat descriptors0;
 | 
						|
        featureDetector->detect(image0, keypoints0);
 | 
						|
        removeVerySmallKeypoints(keypoints0);
 | 
						|
        if(keypoints0.size() < 15)
 | 
						|
            CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
 | 
						|
        descriptorExtractor->compute(image0, keypoints0, descriptors0);
 | 
						|
 | 
						|
        BFMatcher bfmatcher(normType);
 | 
						|
 | 
						|
        const float minIntersectRatio = 0.5f;
 | 
						|
        const int maxAngle = 360, angleStep = 15;
 | 
						|
        for(int angle = 0; angle < maxAngle; angle += angleStep)
 | 
						|
        {
 | 
						|
            Mat H = rotateImage(image0, static_cast<float>(angle), image1, mask1);
 | 
						|
 | 
						|
            vector<KeyPoint> keypoints1;
 | 
						|
            rotateKeyPoints(keypoints0, H, static_cast<float>(angle), keypoints1);
 | 
						|
            Mat descriptors1;
 | 
						|
            descriptorExtractor->compute(image1, keypoints1, descriptors1);
 | 
						|
 | 
						|
            vector<DMatch> descMatches;
 | 
						|
            bfmatcher.match(descriptors0, descriptors1, descMatches);
 | 
						|
 | 
						|
            int descInliersCount = 0;
 | 
						|
            for(size_t m = 0; m < descMatches.size(); m++)
 | 
						|
            {
 | 
						|
                const KeyPoint& transformed_p0 = keypoints1[descMatches[m].queryIdx];
 | 
						|
                const KeyPoint& p1 = keypoints1[descMatches[m].trainIdx];
 | 
						|
                if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
 | 
						|
                                      p1.pt, 0.5f * p1.size) >= minIntersectRatio)
 | 
						|
                {
 | 
						|
                    descInliersCount++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
 | 
						|
            if(descInliersRatio < minDescInliersRatio)
 | 
						|
            {
 | 
						|
                ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
 | 
						|
                           descInliersRatio, minDescInliersRatio);
 | 
						|
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
#if SHOW_DEBUG_LOG
 | 
						|
            std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        ts->set_failed_test_info( cvtest::TS::OK );
 | 
						|
    }
 | 
						|
 | 
						|
    Ptr<FeatureDetector> featureDetector;
 | 
						|
    Ptr<DescriptorExtractor> descriptorExtractor;
 | 
						|
    int normType;
 | 
						|
    float minDescInliersRatio;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class DetectorScaleInvarianceTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    DetectorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
 | 
						|
                                float _minKeyPointMatchesRatio,
 | 
						|
                                float _minScaleInliersRatio) :
 | 
						|
        featureDetector(_featureDetector),
 | 
						|
        minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
 | 
						|
        minScaleInliersRatio(_minScaleInliersRatio)
 | 
						|
    {
 | 
						|
        CV_Assert(!featureDetector.empty());
 | 
						|
    }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void run(int)
 | 
						|
    {
 | 
						|
        const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
 | 
						|
 | 
						|
        // Read test data
 | 
						|
        Mat image0 = imread(imageFilename);
 | 
						|
        if(image0.empty())
 | 
						|
        {
 | 
						|
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
 | 
						|
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        vector<KeyPoint> keypoints0;
 | 
						|
        featureDetector->detect(image0, keypoints0);
 | 
						|
        removeVerySmallKeypoints(keypoints0);
 | 
						|
        if(keypoints0.size() < 15)
 | 
						|
            CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
 | 
						|
 | 
						|
        for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
 | 
						|
        {
 | 
						|
            float scale = 1.f + scaleIdx * 0.5f;
 | 
						|
            Mat image1;
 | 
						|
            resize(image0, image1, Size(), 1./scale, 1./scale);
 | 
						|
 | 
						|
            vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
 | 
						|
            featureDetector->detect(image1, keypoints1);
 | 
						|
            removeVerySmallKeypoints(keypoints1);
 | 
						|
            if(keypoints1.size() < 15)
 | 
						|
                CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
 | 
						|
 | 
						|
            if(keypoints1.size() > keypoints0.size())
 | 
						|
            {
 | 
						|
                ts->printf(cvtest::TS::LOG, "Strange behavior of the detector. "
 | 
						|
                    "It gives more points count in an image of the smaller size.\n"
 | 
						|
                    "original size (%d, %d), keypoints count = %d\n"
 | 
						|
                    "reduced size (%d, %d), keypoints count = %d\n",
 | 
						|
                    image0.cols, image0.rows, keypoints0.size(),
 | 
						|
                    image1.cols, image1.rows, keypoints1.size());
 | 
						|
                ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            scaleKeyPoints(keypoints1, osiKeypoints1, scale);
 | 
						|
 | 
						|
            vector<DMatch> matches;
 | 
						|
            // image1 is query image (it's reduced image0)
 | 
						|
            // image0 is train image
 | 
						|
            matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
 | 
						|
 | 
						|
            const float minIntersectRatio = 0.5f;
 | 
						|
            int keyPointMatchesCount = 0;
 | 
						|
            int scaleInliersCount = 0;
 | 
						|
 | 
						|
            for(size_t m = 0; m < matches.size(); m++)
 | 
						|
            {
 | 
						|
                if(matches[m].distance < minIntersectRatio)
 | 
						|
                    continue;
 | 
						|
 | 
						|
                keyPointMatchesCount++;
 | 
						|
 | 
						|
                // Check does this inlier have consistent sizes
 | 
						|
                const float maxSizeDiff = 0.8f;//0.9f; // grad
 | 
						|
                float size0 = keypoints0[matches[m].trainIdx].size;
 | 
						|
                float size1 = osiKeypoints1[matches[m].queryIdx].size;
 | 
						|
                CV_Assert(size0 > 0 && size1 > 0);
 | 
						|
                if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
 | 
						|
                    scaleInliersCount++;
 | 
						|
            }
 | 
						|
 | 
						|
            float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
 | 
						|
            if(keyPointMatchesRatio < minKeyPointMatchesRatio)
 | 
						|
            {
 | 
						|
                ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
 | 
						|
                           keyPointMatchesRatio, minKeyPointMatchesRatio);
 | 
						|
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            if(keyPointMatchesCount)
 | 
						|
            {
 | 
						|
                float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
 | 
						|
                if(scaleInliersRatio < minScaleInliersRatio)
 | 
						|
                {
 | 
						|
                    ts->printf(cvtest::TS::LOG, "Incorrect scaleInliersRatio: curr = %f, min = %f.\n",
 | 
						|
                               scaleInliersRatio, minScaleInliersRatio);
 | 
						|
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | 
						|
                    return;
 | 
						|
                }
 | 
						|
            }
 | 
						|
#if SHOW_DEBUG_LOG
 | 
						|
            std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
 | 
						|
                << " - scaleInliersRatio " << static_cast<float>(scaleInliersCount) / keyPointMatchesCount << std::endl;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        ts->set_failed_test_info( cvtest::TS::OK );
 | 
						|
    }
 | 
						|
 | 
						|
    Ptr<FeatureDetector> featureDetector;
 | 
						|
    float minKeyPointMatchesRatio;
 | 
						|
    float minScaleInliersRatio;
 | 
						|
};
 | 
						|
 | 
						|
class DescriptorScaleInvarianceTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    DescriptorScaleInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
 | 
						|
                                const Ptr<DescriptorExtractor>& _descriptorExtractor,
 | 
						|
                                int _normType,
 | 
						|
                                float _minDescInliersRatio) :
 | 
						|
        featureDetector(_featureDetector),
 | 
						|
        descriptorExtractor(_descriptorExtractor),
 | 
						|
        normType(_normType),
 | 
						|
        minDescInliersRatio(_minDescInliersRatio)
 | 
						|
    {
 | 
						|
        CV_Assert(!featureDetector.empty());
 | 
						|
        CV_Assert(!descriptorExtractor.empty());
 | 
						|
    }
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    void run(int)
 | 
						|
    {
 | 
						|
        const string imageFilename = string(ts->get_data_path()) + IMAGE_BIKES;
 | 
						|
 | 
						|
        // Read test data
 | 
						|
        Mat image0 = imread(imageFilename);
 | 
						|
        if(image0.empty())
 | 
						|
        {
 | 
						|
            ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
 | 
						|
            ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        vector<KeyPoint> keypoints0;
 | 
						|
        featureDetector->detect(image0, keypoints0);
 | 
						|
        removeVerySmallKeypoints(keypoints0);
 | 
						|
        if(keypoints0.size() < 15)
 | 
						|
            CV_Error(CV_StsAssert, "Detector gives too few points in a test image\n");
 | 
						|
        Mat descriptors0;
 | 
						|
        descriptorExtractor->compute(image0, keypoints0, descriptors0);
 | 
						|
 | 
						|
        BFMatcher bfmatcher(normType);
 | 
						|
        for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
 | 
						|
        {
 | 
						|
            float scale = 1.f + scaleIdx * 0.5f;
 | 
						|
 | 
						|
            Mat image1;
 | 
						|
            resize(image0, image1, Size(), 1./scale, 1./scale);
 | 
						|
 | 
						|
            vector<KeyPoint> keypoints1;
 | 
						|
            scaleKeyPoints(keypoints0, keypoints1, 1.0f/scale);
 | 
						|
            Mat descriptors1;
 | 
						|
            descriptorExtractor->compute(image1, keypoints1, descriptors1);
 | 
						|
 | 
						|
            vector<DMatch> descMatches;
 | 
						|
            bfmatcher.match(descriptors0, descriptors1, descMatches);
 | 
						|
 | 
						|
            const float minIntersectRatio = 0.5f;
 | 
						|
            int descInliersCount = 0;
 | 
						|
            for(size_t m = 0; m < descMatches.size(); m++)
 | 
						|
            {
 | 
						|
                const KeyPoint& transformed_p0 = keypoints0[descMatches[m].queryIdx];
 | 
						|
                const KeyPoint& p1 = keypoints0[descMatches[m].trainIdx];
 | 
						|
                if(calcIntersectRatio(transformed_p0.pt, 0.5f * transformed_p0.size,
 | 
						|
                                      p1.pt, 0.5f * p1.size) >= minIntersectRatio)
 | 
						|
                {
 | 
						|
                    descInliersCount++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            float descInliersRatio = static_cast<float>(descInliersCount) / keypoints0.size();
 | 
						|
            if(descInliersRatio < minDescInliersRatio)
 | 
						|
            {
 | 
						|
                ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
 | 
						|
                           descInliersRatio, minDescInliersRatio);
 | 
						|
                ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
#if SHOW_DEBUG_LOG
 | 
						|
            std::cout << "descInliersRatio " << static_cast<float>(descInliersCount) / keypoints0.size() << std::endl;
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        ts->set_failed_test_info( cvtest::TS::OK );
 | 
						|
    }
 | 
						|
 | 
						|
    Ptr<FeatureDetector> featureDetector;
 | 
						|
    Ptr<DescriptorExtractor> descriptorExtractor;
 | 
						|
    int normType;
 | 
						|
    float minKeyPointMatchesRatio;
 | 
						|
    float minDescInliersRatio;
 | 
						|
};
 | 
						|
 | 
						|
// Tests registration
 | 
						|
 | 
						|
/*
 | 
						|
 * Detector's rotation invariance check
 | 
						|
 */
 | 
						|
TEST(Features2d_RotationInvariance_Detector_SURF, regression)
 | 
						|
{
 | 
						|
    DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>(SURF_NAME),
 | 
						|
                                        0.44f,
 | 
						|
                                        0.76f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
TEST(Features2d_RotationInvariance_Detector_SIFT, DISABLED_regression)
 | 
						|
{
 | 
						|
    DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
 | 
						|
                                        0.45f,
 | 
						|
                                        0.70f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Descriptors's rotation invariance check
 | 
						|
 */
 | 
						|
TEST(Features2d_RotationInvariance_Descriptor_SURF, regression)
 | 
						|
{
 | 
						|
    DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>(SURF_NAME),
 | 
						|
                                          Algorithm::create<DescriptorExtractor>(SURF_NAME),
 | 
						|
                                          NORM_L1,
 | 
						|
                                          0.83f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
TEST(Features2d_RotationInvariance_Descriptor_SIFT, regression)
 | 
						|
{
 | 
						|
    DescriptorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
 | 
						|
                                          Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
 | 
						|
                                          NORM_L1,
 | 
						|
                                          0.98f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Detector's scale invariance check
 | 
						|
 */
 | 
						|
TEST(Features2d_ScaleInvariance_Detector_SURF, regression)
 | 
						|
{
 | 
						|
    DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>(SURF_NAME),
 | 
						|
                                     0.64f,
 | 
						|
                                     0.84f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
TEST(Features2d_ScaleInvariance_Detector_SIFT, regression)
 | 
						|
{
 | 
						|
    DetectorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
 | 
						|
                                     0.69f,
 | 
						|
                                     0.99f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Descriptor's scale invariance check
 | 
						|
 */
 | 
						|
TEST(Features2d_ScaleInvariance_Descriptor_SURF, regression)
 | 
						|
{
 | 
						|
    DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>(SURF_NAME),
 | 
						|
                                       Algorithm::create<DescriptorExtractor>(SURF_NAME),
 | 
						|
                                       NORM_L1,
 | 
						|
                                       0.61f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
TEST(Features2d_ScaleInvariance_Descriptor_SIFT, regression)
 | 
						|
{
 | 
						|
    DescriptorScaleInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
 | 
						|
                                       Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
 | 
						|
                                       NORM_L1,
 | 
						|
                                       0.78f);
 | 
						|
    test.safe_run();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
TEST(Features2d_RotationInvariance2_Detector_SURF, regression)
 | 
						|
{
 | 
						|
    Mat cross(100, 100, CV_8UC1, Scalar(255));
 | 
						|
    line(cross, Point(30, 50), Point(69, 50), Scalar(100), 3);
 | 
						|
    line(cross, Point(50, 30), Point(50, 69), Scalar(100), 3);
 | 
						|
 | 
						|
    SURF surf(8000., 3, 4, true, false);
 | 
						|
 | 
						|
    vector<KeyPoint> keypoints;
 | 
						|
 | 
						|
    surf(cross, noArray(), keypoints);
 | 
						|
 | 
						|
    ASSERT_EQ(keypoints.size(), (vector<KeyPoint>::size_type) 5);
 | 
						|
    ASSERT_LT( fabs(keypoints[1].response - keypoints[2].response), 1e-6);
 | 
						|
    ASSERT_LT( fabs(keypoints[1].response - keypoints[3].response), 1e-6);
 | 
						|
    ASSERT_LT( fabs(keypoints[1].response - keypoints[4].response), 1e-6);
 | 
						|
}
 |