300 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
 | |
|     {
 | |
|         cv::Mat M(2, 3, CV_64FC1);
 | |
| 
 | |
|         M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
 | |
|         M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) =  std::cos(angle); M.at<double>(1, 2) = 0.0;
 | |
| 
 | |
|         return M;
 | |
|     }
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////
 | |
| // Test buildWarpAffineMaps
 | |
| 
 | |
| PARAM_TEST_CASE(BuildWarpAffineMaps, cv::gpu::DeviceInfo, cv::Size, Inverse)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     bool inverse;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         inverse = GET_PARAM(2);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(BuildWarpAffineMaps, Accuracy)
 | |
| {
 | |
|     cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
 | |
|     cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
 | |
| 
 | |
|     cv::gpu::GpuMat xmap, ymap;
 | |
|     cv::gpu::buildWarpAffineMaps(M, inverse, size, xmap, ymap);
 | |
| 
 | |
|     int interpolation = cv::INTER_NEAREST;
 | |
|     int borderMode = cv::BORDER_CONSTANT;
 | |
|     int flags = interpolation;
 | |
|     if (inverse)
 | |
|         flags |= cv::WARP_INVERSE_MAP;
 | |
| 
 | |
|     cv::Mat dst;
 | |
|     cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::warpAffine(src, dst_gold, M, size, flags, borderMode);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, BuildWarpAffineMaps, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     DIRECT_INVERSE));
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////
 | |
| // Gold implementation
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     template <typename T, template <typename> class Interpolator> void warpAffineImpl(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal)
 | |
|     {
 | |
|         const int cn = src.channels();
 | |
| 
 | |
|         dst.create(dsize, src.type());
 | |
| 
 | |
|         for (int y = 0; y < dsize.height; ++y)
 | |
|         {
 | |
|             for (int x = 0; x < dsize.width; ++x)
 | |
|             {
 | |
|                 float xcoo = static_cast<float>(M.at<double>(0, 0) * x + M.at<double>(0, 1) * y + M.at<double>(0, 2));
 | |
|                 float ycoo = static_cast<float>(M.at<double>(1, 0) * x + M.at<double>(1, 1) * y + M.at<double>(1, 2));
 | |
| 
 | |
|                 for (int c = 0; c < cn; ++c)
 | |
|                     dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, ycoo, xcoo, c, borderType, borderVal);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void warpAffineGold(const cv::Mat& src, const cv::Mat& M, bool inverse, cv::Size dsize, cv::Mat& dst, int interpolation, int borderType, cv::Scalar borderVal)
 | |
|     {
 | |
|         typedef void (*func_t)(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal);
 | |
| 
 | |
|         static const func_t nearest_funcs[] =
 | |
|         {
 | |
|             warpAffineImpl<unsigned char, NearestInterpolator>,
 | |
|             warpAffineImpl<signed char, NearestInterpolator>,
 | |
|             warpAffineImpl<unsigned short, NearestInterpolator>,
 | |
|             warpAffineImpl<short, NearestInterpolator>,
 | |
|             warpAffineImpl<int, NearestInterpolator>,
 | |
|             warpAffineImpl<float, NearestInterpolator>
 | |
|         };
 | |
| 
 | |
|         static const func_t linear_funcs[] =
 | |
|         {
 | |
|             warpAffineImpl<unsigned char, LinearInterpolator>,
 | |
|             warpAffineImpl<signed char, LinearInterpolator>,
 | |
|             warpAffineImpl<unsigned short, LinearInterpolator>,
 | |
|             warpAffineImpl<short, LinearInterpolator>,
 | |
|             warpAffineImpl<int, LinearInterpolator>,
 | |
|             warpAffineImpl<float, LinearInterpolator>
 | |
|         };
 | |
| 
 | |
|         static const func_t cubic_funcs[] =
 | |
|         {
 | |
|             warpAffineImpl<unsigned char, CubicInterpolator>,
 | |
|             warpAffineImpl<signed char, CubicInterpolator>,
 | |
|             warpAffineImpl<unsigned short, CubicInterpolator>,
 | |
|             warpAffineImpl<short, CubicInterpolator>,
 | |
|             warpAffineImpl<int, CubicInterpolator>,
 | |
|             warpAffineImpl<float, CubicInterpolator>
 | |
|         };
 | |
| 
 | |
|         static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
 | |
| 
 | |
|         if (inverse)
 | |
|             funcs[interpolation][src.depth()](src, M, dsize, dst, borderType, borderVal);
 | |
|         else
 | |
|         {
 | |
|             cv::Mat iM;
 | |
|             cv::invertAffineTransform(M, iM);
 | |
|             funcs[interpolation][src.depth()](src, iM, dsize, dst, borderType, borderVal);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////
 | |
| // Test
 | |
| 
 | |
| PARAM_TEST_CASE(WarpAffine, cv::gpu::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, BorderType, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int type;
 | |
|     bool inverse;
 | |
|     int interpolation;
 | |
|     int borderType;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         type = GET_PARAM(2);
 | |
|         inverse = GET_PARAM(3);
 | |
|         interpolation = GET_PARAM(4);
 | |
|         borderType = GET_PARAM(5);
 | |
|         useRoi = GET_PARAM(6);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(WarpAffine, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(size, type);
 | |
|     cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
 | |
|     int flags = interpolation;
 | |
|     if (inverse)
 | |
|         flags |= cv::WARP_INVERSE_MAP;
 | |
|     cv::Scalar val = randomScalar(0.0, 255.0);
 | |
| 
 | |
|     cv::gpu::GpuMat dst = createMat(size, type, useRoi);
 | |
|     cv::gpu::warpAffine(loadMat(src, useRoi), dst, M, size, flags, borderType, val);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     warpAffineGold(src, M, inverse, size, dst_gold, interpolation, borderType, val);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-1 : 1.0);
 | |
| }
 | |
| 
 | |
| #ifdef OPENCV_TINY_GPU_MODULE
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffine, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     DIRECT_INVERSE,
 | |
|     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR)),
 | |
|     testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT)),
 | |
|     WHOLE_SUBMAT));
 | |
| #else
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffine, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     DIRECT_INVERSE,
 | |
|     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
 | |
|     testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
 | |
|     WHOLE_SUBMAT));
 | |
| #endif
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////
 | |
| // Test NPP
 | |
| 
 | |
| PARAM_TEST_CASE(WarpAffineNPP, cv::gpu::DeviceInfo, MatType, Inverse, Interpolation)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     int type;
 | |
|     bool inverse;
 | |
|     int interpolation;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         type = GET_PARAM(1);
 | |
|         inverse = GET_PARAM(2);
 | |
|         interpolation = GET_PARAM(3);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(WarpAffineNPP, Accuracy)
 | |
| {
 | |
|     cv::Mat src = readImageType("stereobp/aloe-L.png", type);
 | |
|     ASSERT_FALSE(src.empty());
 | |
| 
 | |
|     cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
 | |
|     int flags = interpolation;
 | |
|     if (inverse)
 | |
|         flags |= cv::WARP_INVERSE_MAP;
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::warpAffine(loadMat(src), dst, M, src.size(), flags);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     warpAffineGold(src, M, inverse, src.size(), dst_gold, interpolation, cv::BORDER_CONSTANT, cv::Scalar::all(0));
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(dst_gold, dst, 2e-2);
 | |
| }
 | |
| 
 | |
| #ifdef OPENCV_TINY_GPU_MODULE
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffineNPP, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     DIRECT_INVERSE,
 | |
|     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR))));
 | |
| #else
 | |
| INSTANTIATE_TEST_CASE_P(GPU_ImgProc, WarpAffineNPP, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
 | |
|     DIRECT_INVERSE,
 | |
|     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC))));
 | |
| #endif
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
