
* remove overloads with explicit buffer, now BufferPool is used * added async versions for all reduce functions
219 lines
7.9 KiB
C++
219 lines
7.9 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
double cv::cuda::norm(InputArray, int, InputArray) { throw_no_cuda(); return 0.0; }
|
|
void cv::cuda::calcNorm(InputArray, OutputArray, int, InputArray, Stream&) { throw_no_cuda(); }
|
|
double cv::cuda::norm(InputArray, InputArray, int) { throw_no_cuda(); return 0.0; }
|
|
void cv::cuda::calcNormDiff(InputArray, InputArray, OutputArray, int, Stream&) { throw_no_cuda(); }
|
|
|
|
Scalar cv::cuda::sum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
|
|
void cv::cuda::calcSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
|
Scalar cv::cuda::absSum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
|
|
void cv::cuda::calcAbsSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
|
Scalar cv::cuda::sqrSum(InputArray, InputArray) { throw_no_cuda(); return Scalar(); }
|
|
void cv::cuda::calcSqrSum(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::minMax(InputArray, double*, double*, InputArray) { throw_no_cuda(); }
|
|
void cv::cuda::findMinMax(InputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
|
void cv::cuda::minMaxLoc(InputArray, double*, double*, Point*, Point*, InputArray) { throw_no_cuda(); }
|
|
void cv::cuda::findMinMaxLoc(InputArray, OutputArray, OutputArray, InputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
int cv::cuda::countNonZero(InputArray) { throw_no_cuda(); return 0; }
|
|
void cv::cuda::countNonZero(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::reduce(InputArray, OutputArray, int, int, int, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::meanStdDev(InputArray, Scalar&, Scalar&) { throw_no_cuda(); }
|
|
void cv::cuda::meanStdDev(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::rectStdDev(InputArray, InputArray, OutputArray, Rect, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::normalize(InputArray, OutputArray, double, double, int, int, InputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::integral(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
|
void cv::cuda::sqrIntegral(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
|
|
|
|
#else
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// norm
|
|
|
|
namespace cv { namespace cuda { namespace internal {
|
|
|
|
void normL2(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask, Stream& stream);
|
|
|
|
void findMaxAbs(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _mask, Stream& stream);
|
|
|
|
}}}
|
|
|
|
void cv::cuda::calcNorm(InputArray _src, OutputArray dst, int normType, InputArray mask, Stream& stream)
|
|
{
|
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
|
|
|
|
GpuMat src = getInputMat(_src, stream);
|
|
|
|
GpuMat src_single_channel = src.reshape(1);
|
|
|
|
if (normType == NORM_L1)
|
|
{
|
|
calcAbsSum(src_single_channel, dst, mask, stream);
|
|
}
|
|
else if (normType == NORM_L2)
|
|
{
|
|
internal::normL2(src_single_channel, dst, mask, stream);
|
|
}
|
|
else // NORM_INF
|
|
{
|
|
internal::findMaxAbs(src_single_channel, dst, mask, stream);
|
|
}
|
|
}
|
|
|
|
double cv::cuda::norm(InputArray _src, int normType, InputArray _mask)
|
|
{
|
|
Stream& stream = Stream::Null();
|
|
|
|
HostMem dst;
|
|
calcNorm(_src, dst, normType, _mask, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double val;
|
|
dst.createMatHeader().convertTo(Mat(1, 1, CV_64FC1, &val), CV_64F);
|
|
|
|
return val;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// meanStdDev
|
|
|
|
void cv::cuda::meanStdDev(InputArray _src, OutputArray _dst, Stream& stream)
|
|
{
|
|
if (!deviceSupports(FEATURE_SET_COMPUTE_13))
|
|
CV_Error(cv::Error::StsNotImplemented, "Not sufficient compute capebility");
|
|
|
|
const GpuMat src = getInputMat(_src, stream);
|
|
|
|
CV_Assert( src.type() == CV_8UC1 );
|
|
|
|
GpuMat dst = getOutputMat(_dst, 1, 2, CV_64FC1, stream);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
int bufSize;
|
|
#if (CUDA_VERSION <= 4020)
|
|
nppSafeCall( nppiMeanStdDev8uC1RGetBufferHostSize(sz, &bufSize) );
|
|
#else
|
|
nppSafeCall( nppiMeanStdDevGetBufferHostSize_8u_C1R(sz, &bufSize) );
|
|
#endif
|
|
|
|
BufferPool pool(stream);
|
|
GpuMat buf = pool.getBuffer(1, bufSize, CV_8UC1);
|
|
|
|
NppStreamHandler h(StreamAccessor::getStream(stream));
|
|
|
|
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), sz, buf.ptr<Npp8u>(), dst.ptr<Npp64f>(), dst.ptr<Npp64f>() + 1) );
|
|
|
|
syncOutput(dst, _dst, stream);
|
|
}
|
|
|
|
void cv::cuda::meanStdDev(InputArray _src, Scalar& mean, Scalar& stddev)
|
|
{
|
|
Stream& stream = Stream::Null();
|
|
|
|
HostMem dst;
|
|
meanStdDev(_src, dst, stream);
|
|
|
|
stream.waitForCompletion();
|
|
|
|
double vals[2];
|
|
dst.createMatHeader().copyTo(Mat(1, 2, CV_64FC1, &vals[0]));
|
|
|
|
mean = Scalar(vals[0]);
|
|
stddev = Scalar(vals[1]);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// rectStdDev
|
|
|
|
void cv::cuda::rectStdDev(InputArray _src, InputArray _sqr, OutputArray _dst, Rect rect, Stream& _stream)
|
|
{
|
|
GpuMat src = getInputMat(_src, _stream);
|
|
GpuMat sqr = getInputMat(_sqr, _stream);
|
|
|
|
CV_Assert( src.type() == CV_32SC1 && sqr.type() == CV_64FC1 );
|
|
|
|
GpuMat dst = getOutputMat(_dst, src.size(), CV_32FC1, _stream);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
NppiRect nppRect;
|
|
nppRect.height = rect.height;
|
|
nppRect.width = rect.width;
|
|
nppRect.x = rect.x;
|
|
nppRect.y = rect.y;
|
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
|
|
|
NppStreamHandler h(stream);
|
|
|
|
nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), sqr.ptr<Npp64f>(), static_cast<int>(sqr.step),
|
|
dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz, nppRect) );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
syncOutput(dst, _dst, _stream);
|
|
}
|
|
|
|
#endif
|