404 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // BroxOpticalFlow
 | |
| 
 | |
| //#define BROX_DUMP
 | |
| 
 | |
| struct BroxOpticalFlow : testing::TestWithParam<cv::cuda::DeviceInfo>
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(BroxOpticalFlow, Regression)
 | |
| {
 | |
|     cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
 | |
|             cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
 | |
|                                               10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
 | |
| 
 | |
|     cv::cuda::GpuMat flow;
 | |
|     brox->calc(loadMat(frame0), loadMat(frame1), flow);
 | |
| 
 | |
|     cv::cuda::GpuMat flows[2];
 | |
|     cv::cuda::split(flow, flows);
 | |
| 
 | |
|     cv::cuda::GpuMat u = flows[0];
 | |
|     cv::cuda::GpuMat v = flows[1];
 | |
| 
 | |
|     std::string fname(cvtest::TS::ptr()->get_data_path());
 | |
|     if (devInfo.majorVersion() >= 2)
 | |
|         fname += "opticalflow/brox_optical_flow_cc20.bin";
 | |
|     else
 | |
|         fname += "opticalflow/brox_optical_flow.bin";
 | |
| 
 | |
| #ifndef BROX_DUMP
 | |
|     std::ifstream f(fname.c_str(), std::ios_base::binary);
 | |
| 
 | |
|     int rows, cols;
 | |
| 
 | |
|     f.read((char*) &rows, sizeof(rows));
 | |
|     f.read((char*) &cols, sizeof(cols));
 | |
| 
 | |
|     cv::Mat u_gold(rows, cols, CV_32FC1);
 | |
| 
 | |
|     for (int i = 0; i < u_gold.rows; ++i)
 | |
|         f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
 | |
| 
 | |
|     cv::Mat v_gold(rows, cols, CV_32FC1);
 | |
| 
 | |
|     for (int i = 0; i < v_gold.rows; ++i)
 | |
|         f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(u_gold, u, 1e-3);
 | |
|     EXPECT_MAT_SIMILAR(v_gold, v, 1e-3);
 | |
| #else
 | |
|     std::ofstream f(fname.c_str(), std::ios_base::binary);
 | |
| 
 | |
|     f.write((char*) &u.rows, sizeof(u.rows));
 | |
|     f.write((char*) &u.cols, sizeof(u.cols));
 | |
| 
 | |
|     cv::Mat h_u(u);
 | |
|     cv::Mat h_v(v);
 | |
| 
 | |
|     for (int i = 0; i < u.rows; ++i)
 | |
|         f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
 | |
| 
 | |
|     for (int i = 0; i < v.rows; ++i)
 | |
|         f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| CUDA_TEST_P(BroxOpticalFlow, OpticalFlowNan)
 | |
| {
 | |
|     cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Mat r_frame0, r_frame1;
 | |
|     cv::resize(frame0, r_frame0, cv::Size(1380,1000));
 | |
|     cv::resize(frame1, r_frame1, cv::Size(1380,1000));
 | |
| 
 | |
|     cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
 | |
|             cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
 | |
|                                               10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
 | |
| 
 | |
|     cv::cuda::GpuMat flow;
 | |
|     brox->calc(loadMat(frame0), loadMat(frame1), flow);
 | |
| 
 | |
|     cv::cuda::GpuMat flows[2];
 | |
|     cv::cuda::split(flow, flows);
 | |
| 
 | |
|     cv::cuda::GpuMat u = flows[0];
 | |
|     cv::cuda::GpuMat v = flows[1];
 | |
| 
 | |
|     cv::Mat h_u, h_v;
 | |
|     u.download(h_u);
 | |
|     v.download(h_v);
 | |
| 
 | |
|     EXPECT_TRUE(cv::checkRange(h_u));
 | |
|     EXPECT_TRUE(cv::checkRange(h_v));
 | |
| };
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, BroxOpticalFlow, ALL_DEVICES);
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // PyrLKOpticalFlow
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(Chan, int)
 | |
|     IMPLEMENT_PARAM_CLASS(DataType, int)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(PyrLKOpticalFlow, cv::cuda::DeviceInfo, Chan, DataType)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     int channels;
 | |
|     int dataType;
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         channels = GET_PARAM(1);
 | |
|         dataType = GET_PARAM(2);
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(PyrLKOpticalFlow, Sparse)
 | |
| {
 | |
|     cv::Mat frame0 = readImage("opticalflow/frame0.png", channels == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/frame1.png", channels == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Mat gray_frame;
 | |
|     if (channels == 1)
 | |
|         gray_frame = frame0;
 | |
|     else
 | |
|         cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
 | |
| 
 | |
|     std::vector<cv::Point2f> pts;
 | |
|     cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
 | |
| 
 | |
|     cv::cuda::GpuMat d_pts;
 | |
|     cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
 | |
|     d_pts.upload(pts_mat);
 | |
| 
 | |
|     cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> pyrLK =
 | |
|             cv::cuda::SparsePyrLKOpticalFlow::create();
 | |
| 
 | |
|     std::vector<cv::Point2f> nextPts_gold;
 | |
|     std::vector<unsigned char> status_gold;
 | |
|     cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
 | |
| 
 | |
| 
 | |
|     cv::cuda::GpuMat d_nextPts;
 | |
|     cv::cuda::GpuMat d_status;
 | |
|     cv::Mat converted0, converted1;
 | |
|     if(channels == 4)
 | |
|     {
 | |
|         cv::cvtColor(frame0, frame0, cv::COLOR_BGR2BGRA);
 | |
|         cv::cvtColor(frame1, frame1, cv::COLOR_BGR2BGRA);
 | |
|     }
 | |
|     frame0.convertTo(converted0, dataType);
 | |
|     frame1.convertTo(converted1, dataType);
 | |
| 
 | |
|     pyrLK->calc(loadMat(converted0), loadMat(converted1), d_pts, d_nextPts, d_status);
 | |
| 
 | |
|     std::vector<cv::Point2f> nextPts(d_nextPts.cols);
 | |
|     cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
 | |
|     d_nextPts.download(nextPts_mat);
 | |
| 
 | |
|     std::vector<unsigned char> status(d_status.cols);
 | |
|     cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
 | |
|     d_status.download(status_mat);
 | |
| 
 | |
|     ASSERT_EQ(nextPts_gold.size(), nextPts.size());
 | |
|     ASSERT_EQ(status_gold.size(), status.size());
 | |
| 
 | |
|     size_t mistmatch = 0;
 | |
|     for (size_t i = 0; i < nextPts.size(); ++i)
 | |
|     {
 | |
|         cv::Point2i a = nextPts[i];
 | |
|         cv::Point2i b = nextPts_gold[i];
 | |
| 
 | |
|         if (status[i] != status_gold[i])
 | |
|         {
 | |
|             ++mistmatch;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (status[i])
 | |
|         {
 | |
|             bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
 | |
| 
 | |
|             if (!eq)
 | |
|                 ++mistmatch;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
 | |
| 
 | |
|     ASSERT_LE(bad_ratio, 0.01);
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, PyrLKOpticalFlow, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(Chan(1), Chan(3), Chan(4)),
 | |
|     testing::Values(DataType(CV_8U), DataType(CV_16U), DataType(CV_32S), DataType(CV_32F))));
 | |
| 
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // FarnebackOpticalFlow
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(PyrScale, double)
 | |
|     IMPLEMENT_PARAM_CLASS(PolyN, int)
 | |
|     CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
 | |
|     IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(FarnebackOpticalFlow, cv::cuda::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     double pyrScale;
 | |
|     int polyN;
 | |
|     int flags;
 | |
|     bool useInitFlow;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         pyrScale = GET_PARAM(1);
 | |
|         polyN = GET_PARAM(2);
 | |
|         flags = GET_PARAM(3);
 | |
|         useInitFlow = GET_PARAM(4);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(FarnebackOpticalFlow, Accuracy)
 | |
| {
 | |
|     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     double polySigma = polyN <= 5 ? 1.1 : 1.5;
 | |
| 
 | |
|     cv::Ptr<cv::cuda::FarnebackOpticalFlow> farn =
 | |
|             cv::cuda::FarnebackOpticalFlow::create();
 | |
|     farn->setPyrScale(pyrScale);
 | |
|     farn->setPolyN(polyN);
 | |
|     farn->setPolySigma(polySigma);
 | |
|     farn->setFlags(flags);
 | |
| 
 | |
|     cv::cuda::GpuMat d_flow;
 | |
|     farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
 | |
| 
 | |
|     cv::Mat flow;
 | |
|     if (useInitFlow)
 | |
|     {
 | |
|         d_flow.download(flow);
 | |
| 
 | |
|         farn->setFlags(farn->getFlags() | cv::OPTFLOW_USE_INITIAL_FLOW);
 | |
|         farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
 | |
|     }
 | |
| 
 | |
|     cv::calcOpticalFlowFarneback(
 | |
|         frame0, frame1, flow, farn->getPyrScale(), farn->getNumLevels(), farn->getWinSize(),
 | |
|         farn->getNumIters(), farn->getPolyN(), farn->getPolySigma(), farn->getFlags());
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(flow, d_flow, 0.1);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, FarnebackOpticalFlow, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
 | |
|     testing::Values(PolyN(5), PolyN(7)),
 | |
|     testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
 | |
|     testing::Values(UseInitFlow(false), UseInitFlow(true))));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // OpticalFlowDual_TVL1
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(Gamma, double)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::cuda::DeviceInfo, Gamma)
 | |
| {
 | |
|     cv::cuda::DeviceInfo devInfo;
 | |
|     double gamma;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         gamma = GET_PARAM(1);
 | |
| 
 | |
|         cv::cuda::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy)
 | |
| {
 | |
|     cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame0.empty());
 | |
| 
 | |
|     cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(frame1.empty());
 | |
| 
 | |
|     cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg =
 | |
|             cv::cuda::OpticalFlowDual_TVL1::create();
 | |
|     d_alg->setNumIterations(10);
 | |
|     d_alg->setGamma(gamma);
 | |
| 
 | |
|     cv::cuda::GpuMat d_flow;
 | |
|     d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow);
 | |
| 
 | |
|     cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
 | |
|     alg->setMedianFiltering(1);
 | |
|     alg->setInnerIterations(1);
 | |
|     alg->setOuterIterations(d_alg->getNumIterations());
 | |
|     alg->setGamma(gamma);
 | |
| 
 | |
|     cv::Mat flow;
 | |
|     alg->calc(frame0, frame1, flow);
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(flow, d_flow, 4e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, OpticalFlowDual_TVL1, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(Gamma(0.0), Gamma(1.0))));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
