323 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "opencv2/core/core_c.h"
 | |
| #include "opencv2/ml/ml.hpp"
 | |
| #include <stdio.h>
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|     printf("\nThis program demonstrated the use of OpenCV's decision tree function for learning and predicting data\n"
 | |
|             "Usage :\n"
 | |
|             "./mushroom <path to agaricus-lepiota.data>\n"
 | |
|             "\n"
 | |
|             "The sample demonstrates how to build a decision tree for classifying mushrooms.\n"
 | |
|             "It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n"
 | |
|             "\n"
 | |
|             "Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
 | |
|             "UCI Repository of machine learning databases\n"
 | |
|             "[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
 | |
|             "Irvine, CA: University of California, Department of Information and Computer Science.\n"
 | |
|             "\n"
 | |
|             "// loads the mushroom database, which is a text file, containing\n"
 | |
|             "// one training sample per row, all the input variables and the output variable are categorical,\n"
 | |
|             "// the values are encoded by characters.\n\n");
 | |
| }
 | |
| 
 | |
| static int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses )
 | |
| {
 | |
|     const int M = 1024;
 | |
|     FILE* f = fopen( filename, "rt" );
 | |
|     CvMemStorage* storage;
 | |
|     CvSeq* seq;
 | |
|     char buf[M+2], *ptr;
 | |
|     float* el_ptr;
 | |
|     CvSeqReader reader;
 | |
|     int i, j, var_count = 0;
 | |
| 
 | |
|     if( !f )
 | |
|         return 0;
 | |
| 
 | |
|     // read the first line and determine the number of variables
 | |
|     if( !fgets( buf, M, f ))
 | |
|     {
 | |
|         fclose(f);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     for( ptr = buf; *ptr != '\0'; ptr++ )
 | |
|         var_count += *ptr == ',';
 | |
|     assert( ptr - buf == (var_count+1)*2 );
 | |
| 
 | |
|     // create temporary memory storage to store the whole database
 | |
|     el_ptr = new float[var_count+1];
 | |
|     storage = cvCreateMemStorage();
 | |
|     seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );
 | |
| 
 | |
|     for(;;)
 | |
|     {
 | |
|         for( i = 0; i <= var_count; i++ )
 | |
|         {
 | |
|             int c = buf[i*2];
 | |
|             el_ptr[i] = c == '?' ? -1.f : (float)c;
 | |
|         }
 | |
|         if( i != var_count+1 )
 | |
|             break;
 | |
|         cvSeqPush( seq, el_ptr );
 | |
|         if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
 | |
|             break;
 | |
|     }
 | |
|     fclose(f);
 | |
| 
 | |
|     // allocate the output matrices and copy the base there
 | |
|     *data = cvCreateMat( seq->total, var_count, CV_32F );
 | |
|     *missing = cvCreateMat( seq->total, var_count, CV_8U );
 | |
|     *responses = cvCreateMat( seq->total, 1, CV_32F );
 | |
| 
 | |
|     cvStartReadSeq( seq, &reader );
 | |
| 
 | |
|     for( i = 0; i < seq->total; i++ )
 | |
|     {
 | |
|         const float* sdata = (float*)reader.ptr + 1;
 | |
|         float* ddata = data[0]->data.fl + var_count*i;
 | |
|         float* dr = responses[0]->data.fl + i;
 | |
|         uchar* dm = missing[0]->data.ptr + var_count*i;
 | |
| 
 | |
|         for( j = 0; j < var_count; j++ )
 | |
|         {
 | |
|             ddata[j] = sdata[j];
 | |
|             dm[j] = sdata[j] < 0;
 | |
|         }
 | |
|         *dr = sdata[-1];
 | |
|         CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
 | |
|     }
 | |
| 
 | |
|     cvReleaseMemStorage( &storage );
 | |
|     delete [] el_ptr;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static CvDTree* mushroom_create_dtree( const CvMat* data, const CvMat* missing,
 | |
|                                 const CvMat* responses, float p_weight )
 | |
| {
 | |
|     CvDTree* dtree;
 | |
|     CvMat* var_type;
 | |
|     int i, hr1 = 0, hr2 = 0, p_total = 0;
 | |
|     float priors[] = { 1, p_weight };
 | |
| 
 | |
|     var_type = cvCreateMat( data->cols + 1, 1, CV_8U );
 | |
|     cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all the variables are categorical
 | |
| 
 | |
|     dtree = new CvDTree;
 | |
| 
 | |
|     dtree->train( data, CV_ROW_SAMPLE, responses, 0, 0, var_type, missing,
 | |
|                   CvDTreeParams( 8, // max depth
 | |
|                                  10, // min sample count
 | |
|                                  0, // regression accuracy: N/A here
 | |
|                                  true, // compute surrogate split, as we have missing data
 | |
|                                  15, // max number of categories (use sub-optimal algorithm for larger numbers)
 | |
|                                  10, // the number of cross-validation folds
 | |
|                                  true, // use 1SE rule => smaller tree
 | |
|                                  true, // throw away the pruned tree branches
 | |
|                                  priors // the array of priors, the bigger p_weight, the more attention
 | |
|                                         // to the poisonous mushrooms
 | |
|                                         // (a mushroom will be judjed to be poisonous with bigger chance)
 | |
|                                  ));
 | |
| 
 | |
|     // compute hit-rate on the training database, demonstrates predict usage.
 | |
|     for( i = 0; i < data->rows; i++ )
 | |
|     {
 | |
|         CvMat sample, mask;
 | |
|         cvGetRow( data, &sample, i );
 | |
|         cvGetRow( missing, &mask, i );
 | |
|         double r = dtree->predict( &sample, &mask )->value;
 | |
|         int d = fabs(r - responses->data.fl[i]) >= FLT_EPSILON;
 | |
|         if( d )
 | |
|         {
 | |
|             if( r != 'p' )
 | |
|                 hr1++;
 | |
|             else
 | |
|                 hr2++;
 | |
|         }
 | |
|         p_total += responses->data.fl[i] == 'p';
 | |
|     }
 | |
| 
 | |
|     printf( "Results on the training database:\n"
 | |
|             "\tPoisonous mushrooms mis-predicted: %d (%g%%)\n"
 | |
|             "\tFalse-alarms: %d (%g%%)\n", hr1, (double)hr1*100/p_total,
 | |
|             hr2, (double)hr2*100/(data->rows - p_total) );
 | |
| 
 | |
|     cvReleaseMat( &var_type );
 | |
| 
 | |
|     return dtree;
 | |
| }
 | |
| 
 | |
| 
 | |
| static const char* var_desc[] =
 | |
| {
 | |
|     "cap shape (bell=b,conical=c,convex=x,flat=f)",
 | |
|     "cap surface (fibrous=f,grooves=g,scaly=y,smooth=s)",
 | |
|     "cap color (brown=n,buff=b,cinnamon=c,gray=g,green=r,\n\tpink=p,purple=u,red=e,white=w,yellow=y)",
 | |
|     "bruises? (bruises=t,no=f)",
 | |
|     "odor (almond=a,anise=l,creosote=c,fishy=y,foul=f,\n\tmusty=m,none=n,pungent=p,spicy=s)",
 | |
|     "gill attachment (attached=a,descending=d,free=f,notched=n)",
 | |
|     "gill spacing (close=c,crowded=w,distant=d)",
 | |
|     "gill size (broad=b,narrow=n)",
 | |
|     "gill color (black=k,brown=n,buff=b,chocolate=h,gray=g,\n\tgreen=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y)",
 | |
|     "stalk shape (enlarging=e,tapering=t)",
 | |
|     "stalk root (bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r)",
 | |
|     "stalk surface above ring (ibrous=f,scaly=y,silky=k,smooth=s)",
 | |
|     "stalk surface below ring (ibrous=f,scaly=y,silky=k,smooth=s)",
 | |
|     "stalk color above ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
 | |
|     "stalk color below ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
 | |
|     "veil type (partial=p,universal=u)",
 | |
|     "veil color (brown=n,orange=o,white=w,yellow=y)",
 | |
|     "ring number (none=n,one=o,two=t)",
 | |
|     "ring type (cobwebby=c,evanescent=e,flaring=f,large=l,\n\tnone=n,pendant=p,sheathing=s,zone=z)",
 | |
|     "spore print color (black=k,brown=n,buff=b,chocolate=h,green=r,\n\torange=o,purple=u,white=w,yellow=y)",
 | |
|     "population (abundant=a,clustered=c,numerous=n,\n\tscattered=s,several=v,solitary=y)",
 | |
|     "habitat (grasses=g,leaves=l,meadows=m,paths=p\n\turban=u,waste=w,woods=d)",
 | |
|     0
 | |
| };
 | |
| 
 | |
| 
 | |
| static void print_variable_importance( CvDTree* dtree )
 | |
| {
 | |
|     const CvMat* var_importance = dtree->get_var_importance();
 | |
|     int i;
 | |
|     char input[1000];
 | |
| 
 | |
|     if( !var_importance )
 | |
|     {
 | |
|         printf( "Error: Variable importance can not be retrieved\n" );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     printf( "Print variable importance information? (y/n) " );
 | |
|     int values_read = scanf( "%1s", input );
 | |
|     CV_Assert(values_read == 1);
 | |
| 
 | |
|     if( input[0] != 'y' && input[0] != 'Y' )
 | |
|         return;
 | |
| 
 | |
|     for( i = 0; i < var_importance->cols*var_importance->rows; i++ )
 | |
|     {
 | |
|         double val = var_importance->data.db[i];
 | |
|         char buf[100];
 | |
|         int len = (int)(strchr( var_desc[i], '(' ) - var_desc[i] - 1);
 | |
|         strncpy( buf, var_desc[i], len );
 | |
|         buf[len] = '\0';
 | |
|         printf( "%s", buf );
 | |
|         printf( ": %g%%\n", val*100. );
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void interactive_classification( CvDTree* dtree )
 | |
| {
 | |
|     char input[1000];
 | |
|     const CvDTreeNode* root;
 | |
|     CvDTreeTrainData* data;
 | |
| 
 | |
|     if( !dtree )
 | |
|         return;
 | |
| 
 | |
|     root = dtree->get_root();
 | |
|     data = dtree->get_data();
 | |
| 
 | |
|     for(;;)
 | |
|     {
 | |
|         const CvDTreeNode* node;
 | |
| 
 | |
|         printf( "Start/Proceed with interactive mushroom classification (y/n): " );
 | |
|         int values_read = scanf( "%1s", input );
 | |
|         CV_Assert(values_read == 1);
 | |
| 
 | |
|         if( input[0] != 'y' && input[0] != 'Y' )
 | |
|             break;
 | |
|         printf( "Enter 1-letter answers, '?' for missing/unknown value...\n" );
 | |
| 
 | |
|         // custom version of predict
 | |
|         node = root;
 | |
|         for(;;)
 | |
|         {
 | |
|             CvDTreeSplit* split = node->split;
 | |
|             int dir = 0;
 | |
| 
 | |
|             if( !node->left || node->Tn <= dtree->get_pruned_tree_idx() || !node->split )
 | |
|                 break;
 | |
| 
 | |
|             for( ; split != 0; )
 | |
|             {
 | |
|                 int vi = split->var_idx, j;
 | |
|                 int count = data->cat_count->data.i[vi];
 | |
|                 const int* map = data->cat_map->data.i + data->cat_ofs->data.i[vi];
 | |
| 
 | |
|                 printf( "%s: ", var_desc[vi] );
 | |
|                 values_read = scanf( "%1s", input );
 | |
|                 CV_Assert(values_read == 1);
 | |
| 
 | |
|                 if( input[0] == '?' )
 | |
|                 {
 | |
|                     split = split->next;
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 // convert the input character to the normalized value of the variable
 | |
|                 for( j = 0; j < count; j++ )
 | |
|                     if( map[j] == input[0] )
 | |
|                         break;
 | |
|                 if( j < count )
 | |
|                 {
 | |
|                     dir = (split->subset[j>>5] & (1 << (j&31))) ? -1 : 1;
 | |
|                     if( split->inversed )
 | |
|                         dir = -dir;
 | |
|                     break;
 | |
|                 }
 | |
|                 else
 | |
|                     printf( "Error: unrecognized value\n" );
 | |
|             }
 | |
| 
 | |
|             if( !dir )
 | |
|             {
 | |
|                 printf( "Impossible to classify the sample\n");
 | |
|                 node = 0;
 | |
|                 break;
 | |
|             }
 | |
|             node = dir < 0 ? node->left : node->right;
 | |
|         }
 | |
| 
 | |
|         if( node )
 | |
|             printf( "Prediction result: the mushroom is %s\n",
 | |
|                     node->class_idx == 0 ? "EDIBLE" : "POISONOUS" );
 | |
|         printf( "\n-----------------------------\n" );
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| int main( int argc, char** argv )
 | |
| {
 | |
|     CvMat *data = 0, *missing = 0, *responses = 0;
 | |
|     CvDTree* dtree;
 | |
|     const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data";
 | |
| 
 | |
|     help();
 | |
| 
 | |
|     if( !mushroom_read_database( base_path, &data, &missing, &responses ) )
 | |
|     {
 | |
|         printf( "\nUnable to load the training database\n\n");
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     dtree = mushroom_create_dtree( data, missing, responses,
 | |
|         10 // poisonous mushrooms will have 10x higher weight in the decision tree
 | |
|         );
 | |
|     cvReleaseMat( &data );
 | |
|     cvReleaseMat( &missing );
 | |
|     cvReleaseMat( &responses );
 | |
| 
 | |
|     print_variable_importance( dtree );
 | |
|     interactive_classification( dtree );
 | |
|     delete dtree;
 | |
| 
 | |
|     return 0;
 | |
| }
 | 
