opencv/modules/gpu/src/optical_flow_farneback.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

410 lines
14 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define MIN_SIZE 32
#define S(x) StreamAccessor::getStream(x)
// GPU resize() is fast, but it differs from the CPU analog. Disabling this flag
// leads to an inefficient code. It's for debug purposes only.
#define ENABLE_GPU_RESIZE 1
using namespace cv;
using namespace cv::gpu;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
void cv::gpu::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else
namespace cv { namespace gpu { namespace device { namespace optflow_farneback
{
void setPolynomialExpansionConsts(
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55);
void polynomialExpansionGpu(const PtrStepSzf &src, int polyN, PtrStepSzf dst, cudaStream_t stream);
void setUpdateMatricesConsts();
void updateMatricesGpu(
const PtrStepSzf flowx, const PtrStepSzf flowy, const PtrStepSzf R0, const PtrStepSzf R1,
PtrStepSzf M, cudaStream_t stream);
void updateFlowGpu(
const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream);
/*void boxFilterGpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);*/
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
void gaussianBlurGpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu_CC11(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback
void cv::gpu::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void cv::gpu::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma)
{
std::vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
}
void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
if (deviceSupports(FEATURE_SET_COMPUTE_12))
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0]));
else
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0]));
swap(M, bufM);
for (int i = 1; i < 5; ++i)
streams[i].waitForCompletion();
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
if (deviceSupports(FEATURE_SET_COMPUTE_12))
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
else
device::optflow_farneback::gaussianBlur5Gpu_CC11(
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0]));
swap(M, bufM);
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0]));
}
void cv::gpu::FarnebackOpticalFlow::operator ()(
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
{
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN == 5 || polyN == 7);
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);
Stream streams[5];
if (S(s))
streams[0] = s;
Size size = frame0.size();
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
GpuMat flowx0 = flowx;
GpuMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels; numLevelsCropped++)
{
scale *= pyrScale;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
streams[0].enqueueConvert(frame0, frames_[0], CV_32F);
streams[1].enqueueConvert(frame1, frames_[1], CV_32F);
if (fastPyramids)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
}
}
setPolynomialExpansionConsts(polyN, polySigma);
device::optflow_farneback::setUpdateMatricesConsts();
for (int k = numLevelsCropped; k >= 0; k--)
{
streams[0].waitForCompletion();
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags & OPTFLOW_USE_INITIAL_FLOW)
{
#if ENABLE_GPU_RESIZE
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale);
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale);
#else
Mat tmp1, tmp2;
flowx0.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
tmp2 *= scale;
curFlowX.upload(tmp2);
flowy0.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
tmp2 *= scale;
curFlowY.upload(tmp2);
#endif
}
else
{
streams[0].enqueueMemSet(curFlowX, 0);
streams[1].enqueueMemSet(curFlowY, 0);
}
}
else
{
#if ENABLE_GPU_RESIZE
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale);
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale);
#else
Mat tmp1, tmp2;
prevFlowX.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
tmp2 *= 1./pyrScale;
curFlowX.upload(tmp2);
prevFlowY.download(tmp1);
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR);
tmp2 *= 1./pyrScale;
curFlowY.upload(tmp2);
#endif
}
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
GpuMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids)
{
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0]));
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1]));
}
else
{
GpuMat blurredFrame[2] =
{
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
};
GpuMat pyrLevel[2] =
{
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
device::optflow_farneback::gaussianBlurGpu(
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101_GPU, S(streams[i]));
#if ENABLE_GPU_RESIZE
resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR, streams[i]);
#else
Mat tmp1, tmp2;
tmp[i].download(tmp1);
resize(tmp1, tmp2, Size(width, height), INTER_LINEAR);
I[i].upload(tmp2);
#endif
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i]));
}
}
streams[1].waitForCompletion();
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0]));
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2);
}
for (int i = 0; i < numIters; i++)
{
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
if (!S(s))
streams[0].waitForCompletion();
}
#endif