303 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| const string FEATURES2D_DIR = "features2d";
 | |
| const string IMAGE_FILENAME = "tsukuba.png";
 | |
| const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors";
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *            Regression tests for feature detectors comparing keypoints.                 *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| class CV_FeatureDetectorTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
 | |
|         name(_name), fdetector(_fdetector) {}
 | |
| 
 | |
| protected:
 | |
|     bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
 | |
|     void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
 | |
| 
 | |
|     void emptyDataTest();
 | |
|     void regressionTest(); // TODO test of detect() with mask
 | |
| 
 | |
|     virtual void run( int );
 | |
| 
 | |
|     string name;
 | |
|     Ptr<FeatureDetector> fdetector;
 | |
| };
 | |
| 
 | |
| void CV_FeatureDetectorTest::emptyDataTest()
 | |
| {
 | |
|     // One image.
 | |
|     Mat image;
 | |
|     vector<KeyPoint> keypoints;
 | |
|     try
 | |
|     {
 | |
|         fdetector->detect( image, keypoints );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     if( !keypoints.empty() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Several images.
 | |
|     vector<Mat> images;
 | |
|     vector<vector<KeyPoint> > keypointCollection;
 | |
|     try
 | |
|     {
 | |
|         fdetector->detect( images, keypointCollection );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
 | |
| {
 | |
|     const float maxPtDif = 1.f;
 | |
|     const float maxSizeDif = 1.f;
 | |
|     const float maxAngleDif = 2.f;
 | |
|     const float maxResponseDif = 0.1f;
 | |
| 
 | |
|     float dist = (float)norm( p1.pt - p2.pt );
 | |
|     return (dist < maxPtDif &&
 | |
|             fabs(p1.size - p2.size) < maxSizeDif &&
 | |
|             abs(p1.angle - p2.angle) < maxAngleDif &&
 | |
|             abs(p1.response - p2.response) < maxResponseDif &&
 | |
|             p1.octave == p2.octave &&
 | |
|             p1.class_id == p2.class_id );
 | |
| }
 | |
| 
 | |
| void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
 | |
| {
 | |
|     const float maxCountRatioDif = 0.01f;
 | |
| 
 | |
|     // Compare counts of validation and calculated keypoints.
 | |
|     float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
 | |
|     if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
 | |
|                     validKeypoints.size(), calcKeypoints.size() );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
 | |
|     int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
 | |
|     for( size_t v = 0; v < validKeypoints.size(); v++ )
 | |
|     {
 | |
|         int nearestIdx = -1;
 | |
|         float minDist = std::numeric_limits<float>::max();
 | |
| 
 | |
|         for( size_t c = 0; c < calcKeypoints.size(); c++ )
 | |
|         {
 | |
|             progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
 | |
|             float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
 | |
|             if( curDist < minDist )
 | |
|             {
 | |
|                 minDist = curDist;
 | |
|                 nearestIdx = (int)c;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         assert( minDist >= 0 );
 | |
|         if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
 | |
|             badPointCount++;
 | |
|     }
 | |
|     ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
 | |
|                 badPointCount, validKeypoints.size(), calcKeypoints.size() );
 | |
|     if( badPointCount > 0.9 * commonPointCount )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|         return;
 | |
|     }
 | |
|     ts->printf( cvtest::TS::LOG, " - OK\n" );
 | |
| }
 | |
| 
 | |
| void CV_FeatureDetectorTest::regressionTest()
 | |
| {
 | |
|     assert( !fdetector.empty() );
 | |
|     string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
 | |
|     string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
 | |
| 
 | |
|     // Read the test image.
 | |
|     Mat image = imread( imgFilename );
 | |
|     if( image.empty() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     FileStorage fs( resFilename, FileStorage::READ );
 | |
| 
 | |
|     // Compute keypoints.
 | |
|     vector<KeyPoint> calcKeypoints;
 | |
|     fdetector->detect( image, calcKeypoints );
 | |
| 
 | |
|     if( fs.isOpened() ) // Compare computed and valid keypoints.
 | |
|     {
 | |
|         // TODO compare saved feature detector params with current ones
 | |
| 
 | |
|         // Read validation keypoints set.
 | |
|         vector<KeyPoint> validKeypoints;
 | |
|         read( fs["keypoints"], validKeypoints );
 | |
|         if( validKeypoints.empty() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         compareKeypointSets( validKeypoints, calcKeypoints );
 | |
|     }
 | |
|     else // Write detector parameters and computed keypoints as validation data.
 | |
|     {
 | |
|         fs.open( resFilename, FileStorage::WRITE );
 | |
|         if( !fs.isOpened() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             fs << "detector_params" << "{";
 | |
|             fdetector->write( fs );
 | |
|             fs << "}";
 | |
| 
 | |
|             write( fs, "keypoints", calcKeypoints );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_FeatureDetectorTest::run( int /*start_from*/ )
 | |
| {
 | |
|     if( fdetector.empty() )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     emptyDataTest();
 | |
|     regressionTest();
 | |
| 
 | |
|     ts->set_failed_test_info( cvtest::TS::OK );
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                Tests registrations                                     *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| TEST( Features2d_Detector_BRISK, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-brisk", FeatureDetector::create("BRISK") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_FAST, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-fast", FeatureDetector::create("FAST") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_GFTT, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-gftt", FeatureDetector::create("GFTT") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_Harris, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-harris", FeatureDetector::create("HARRIS") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_MSER, DISABLED_regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-mser", FeatureDetector::create("MSER") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_STAR, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-star", FeatureDetector::create("STAR") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_ORB, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-orb", FeatureDetector::create("ORB") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_GridFAST, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-grid-fast", FeatureDetector::create("GridFAST") );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_Detector_PyramidFAST, regression )
 | |
| {
 | |
|     CV_FeatureDetectorTest test( "detector-pyramid-fast", FeatureDetector::create("PyramidFAST") );
 | |
|     test.safe_run();
 | |
| }
 | 
