343 lines
19 KiB
C++
343 lines
19 KiB
C++
/*#******************************************************************************
|
|
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
**
|
|
** By downloading, copying, installing or using the software you agree to this license.
|
|
** If you do not agree to this license, do not download, install,
|
|
** copy or use the software.
|
|
**
|
|
**
|
|
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
|
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
|
|
**
|
|
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
|
**
|
|
** Creation - enhancement process 2007-2011
|
|
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
|
**
|
|
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
|
** Refer to the following research paper for more information:
|
|
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
|
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
|
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
|
**
|
|
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
|
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
|
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
|
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
|
** ====> more informations in the above cited Jeanny Heraults's book.
|
|
**
|
|
** License Agreement
|
|
** For Open Source Computer Vision Library
|
|
**
|
|
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
**
|
|
** For Human Visual System tools (hvstools)
|
|
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
|
**
|
|
** Third party copyrights are property of their respective owners.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without modification,
|
|
** are permitted provided that the following conditions are met:
|
|
**
|
|
** * Redistributions of source code must retain the above copyright notice,
|
|
** this list of conditions and the following disclaimer.
|
|
**
|
|
** * Redistributions in binary form must reproduce the above copyright notice,
|
|
** this list of conditions and the following disclaimer in the documentation
|
|
** and/or other materials provided with the distribution.
|
|
**
|
|
** * The name of the copyright holders may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** This software is provided by the copyright holders and contributors "as is" and
|
|
** any express or implied warranties, including, but not limited to, the implied
|
|
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
** indirect, incidental, special, exemplary, or consequential damages
|
|
** (including, but not limited to, procurement of substitute goods or services;
|
|
** loss of use, data, or profits; or business interruption) however caused
|
|
** and on any theory of liability, whether in contract, strict liability,
|
|
** or tort (including negligence or otherwise) arising in any way out of
|
|
** the use of this software, even if advised of the possibility of such damage.
|
|
*******************************************************************************/
|
|
|
|
/**
|
|
* @class RetinaColor a color multilexing/demultiplexing (demosaicing) based on a human vision inspiration. Different mosaicing strategies can be used, included random sampling !
|
|
* => please take a look at the nice and efficient demosaicing strategy introduced by B.Chaix de Lavarene, take a look at the cited paper for more mathematical details
|
|
* @brief Retina color sampling model which allows classical bayer sampling, random and potentially several other method ! Low color errors on corners !
|
|
* -> Based on the research of:
|
|
* .Brice Chaix Lavarene (chaix@lis.inpg.fr)
|
|
* .Jeanny Herault (herault@lis.inpg.fr)
|
|
* .David Alleyson (david.alleyson@upmf-grenoble.fr)
|
|
* .collaboration: alexandre benoit (benoit.alexandre.vision@gmail.com or benoit@lis.inpg.fr)
|
|
* Please cite: B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
|
* @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC / Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
|
|
* Creation date 2007
|
|
*/
|
|
|
|
#ifndef RETINACOLOR_HPP_
|
|
#define RETINACOLOR_HPP_
|
|
|
|
#include "basicretinafilter.hpp"
|
|
|
|
//#define __RETINACOLORDEBUG //define RETINACOLORDEBUG in order to display debug data
|
|
|
|
namespace cv
|
|
{
|
|
|
|
class RetinaColor: public BasicRetinaFilter
|
|
{
|
|
public:
|
|
/**
|
|
* @typedef which allows to select the type of photoreceptors color sampling
|
|
*/
|
|
|
|
/**
|
|
* constructor of the retina color processing model
|
|
* @param NBrows: number of rows of the input image
|
|
* @param NBcolumns: number of columns of the input image
|
|
* @param samplingMethod: the chosen color sampling method
|
|
*/
|
|
RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod=RETINA_COLOR_DIAGONAL);
|
|
|
|
/**
|
|
* standard destructor
|
|
*/
|
|
virtual ~RetinaColor();
|
|
|
|
/**
|
|
* function that clears all buffers of the object
|
|
*/
|
|
void clearAllBuffers();
|
|
|
|
/**
|
|
* resize retina color filter object (resize all allocated buffers)
|
|
* @param NBrows: the new height size
|
|
* @param NBcolumns: the new width size
|
|
*/
|
|
void resize(const unsigned int NBrows, const unsigned int NBcolumns);
|
|
|
|
|
|
/**
|
|
* color multiplexing function: a demultiplexed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue
|
|
* @param inputRGBFrame: the input RGB frame to be processed
|
|
* @return, nothing but the multiplexed frame is available by the use of the getMultiplexedFrame() function
|
|
*/
|
|
inline void runColorMultiplexing(const std::valarray<float> &inputRGBFrame){runColorMultiplexing(inputRGBFrame, *_multiplexedFrame);};
|
|
|
|
/**
|
|
* color multiplexing function: a demultipleed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue if using RGB images
|
|
* @param demultiplexedInputFrame: the demultiplexed input frame to be processed of size M*N*3
|
|
* @param multiplexedFrame: the resulting multiplexed frame
|
|
*/
|
|
void runColorMultiplexing(const std::valarray<float> &demultiplexedInputFrame, std::valarray<float> &multiplexedFrame);
|
|
|
|
/**
|
|
* color demultiplexing function: a multiplexed frame of size M*N*1 pixels is transformed into a RGB demultiplexed M*N*3 pixels frame
|
|
* @param multiplexedColorFrame: the input multiplexed frame to be processed
|
|
* @param adaptiveFiltering: specifies if an adaptive filtering has to be perform rather than standard filtering (adaptive filtering allows a better rendering)
|
|
* @param maxInputValue: the maximum input data value (should be 255 for 8 bits images but it can change in the case of High Dynamic Range Images (HDRI)
|
|
* @return, nothing but the output demultiplexed frame is available by the use of the getDemultiplexedColorFrame() function, also use getLuminance() and getChrominance() in order to retreive either luminance or chrominance
|
|
*/
|
|
void runColorDemultiplexing(const std::valarray<float> &multiplexedColorFrame, const bool adaptiveFiltering=false, const float maxInputValue=255.0);
|
|
|
|
/**
|
|
* activate color saturation as the final step of the color demultiplexing process
|
|
* -> this saturation is a sigmoide function applied to each channel of the demultiplexed image.
|
|
* @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false)
|
|
* @param colorSaturationValue: the saturation factor
|
|
* */
|
|
void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0){_saturateColors=saturateColors; _colorSaturationValue=colorSaturationValue;};
|
|
|
|
/**
|
|
* set parameters of the low pass spatio-temporal filter used to retreive the low chrominance
|
|
* @param beta: gain of the filter (generally set to zero)
|
|
* @param tau: time constant of the filter (unit is frame for video processing), typically 0 when considering static processing, 1 or more if a temporal smoothing effect is required
|
|
* @param k: spatial constant of the filter (unit is pixels), typical value is 2.5
|
|
*/
|
|
void setChrominanceLPfilterParameters(const float beta, const float tau, const float k){setLPfilterParameters(beta, tau, k);};
|
|
|
|
/**
|
|
* apply to the retina color output the Krauskopf transformation which leads to an opponent color system: output colorspace if Acr1cr2 if input of the retina was LMS color space
|
|
* @param result: the input buffer to fill with the transformed colorspace retina output
|
|
* @return true if process ended successfully
|
|
*/
|
|
bool applyKrauskopfLMS2Acr1cr2Transform(std::valarray<float> &result);
|
|
|
|
/**
|
|
* apply to the retina color output the CIE Lab color transformation
|
|
* @param result: the input buffer to fill with the transformed colorspace retina output
|
|
* @return true if process ended successfully
|
|
*/
|
|
bool applyLMS2LabTransform(std::valarray<float> &result);
|
|
|
|
/**
|
|
* @return the multiplexed frame result (use this after function runColorMultiplexing)
|
|
*/
|
|
inline const std::valarray<float> &getMultiplexedFrame() const {return *_multiplexedFrame;};
|
|
|
|
/**
|
|
* @return the demultiplexed frame result (use this after function runColorDemultiplexing)
|
|
*/
|
|
inline const std::valarray<float> &getDemultiplexedColorFrame() const {return _demultiplexedColorFrame;};
|
|
|
|
/**
|
|
* @return the luminance of the processed frame (use this after function runColorDemultiplexing)
|
|
*/
|
|
inline const std::valarray<float> &getLuminance() const {return *_luminance;};
|
|
|
|
/**
|
|
* @return the chrominance of the processed frame (use this after function runColorDemultiplexing)
|
|
*/
|
|
inline const std::valarray<float> &getChrominance() const {return _chrominance;};
|
|
|
|
/**
|
|
* standard 0 to 255 image clipping function appled to RGB images (of size M*N*3 pixels)
|
|
* @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized
|
|
* @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped
|
|
*/
|
|
void clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxOutputValue=255.0);
|
|
|
|
/**
|
|
* standard 0 to 255 image normalization function appled to RGB images (of size M*N*3 pixels)
|
|
* @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped
|
|
*/
|
|
void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue=255.0);
|
|
|
|
/**
|
|
* return the color sampling map: a Nrows*Mcolumns image in which each pixel value is the ofsset adress which gives the adress of the sampled pixel on an Nrows*Mcolumns*3 color image ordered by layers: layer1, layer2, layer3
|
|
*/
|
|
inline const std::valarray<unsigned int> &getSamplingMap() const {return _colorSampling;};
|
|
|
|
/**
|
|
* function used (to bypass processing) to manually set the color output
|
|
* @param demultiplexedImage: the color image (luminance+chrominance) which has to be written in the object buffer
|
|
*/
|
|
inline void setDemultiplexedColorFrame(const std::valarray<float> &demultiplexedImage){_demultiplexedColorFrame=demultiplexedImage;};
|
|
|
|
protected:
|
|
|
|
// private functions
|
|
RETINA_COLORSAMPLINGMETHOD _samplingMethod;
|
|
bool _saturateColors;
|
|
float _colorSaturationValue;
|
|
// links to parent buffers (more convienient names
|
|
TemplateBuffer<float> *_luminance;
|
|
std::valarray<float> *_multiplexedFrame;
|
|
// instance buffers
|
|
std::valarray<unsigned int> _colorSampling; // table (size (_nbRows*_nbColumns) which specifies the color of each pixel
|
|
std::valarray<float> _RGBmosaic;
|
|
std::valarray<float> _tempMultiplexedFrame;
|
|
std::valarray<float> _demultiplexedTempBuffer;
|
|
std::valarray<float> _demultiplexedColorFrame;
|
|
std::valarray<float> _chrominance;
|
|
std::valarray<float> _colorLocalDensity;// buffer which contains the local density of the R, G and B photoreceptors for a normalization use
|
|
std::valarray<float> _imageGradient;
|
|
|
|
// variables
|
|
float _pR, _pG, _pB; // probabilities of color R, G and B
|
|
bool _objectInit;
|
|
|
|
// protected functions
|
|
void _initColorSampling();
|
|
void _interpolateImageDemultiplexedImage(float *inputOutputBuffer);
|
|
void _interpolateSingleChannelImage111(float *inputOutputBuffer);
|
|
void _interpolateBayerRGBchannels(float *inputOutputBuffer);
|
|
void _applyRIFfilter(const float *sourceBuffer, float *destinationBuffer);
|
|
void _getNormalizedContoursImage(const float *inputFrame, float *outputFrame);
|
|
// -> special adaptive filters dedicated to low pass filtering on the chrominance (skeeps filtering on the edges)
|
|
void _adaptiveSpatialLPfilter(const float *inputFrame, float *outputFrame);
|
|
void _adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, const unsigned int IDrowStart, const unsigned int IDrowEnd); // TBB parallelized
|
|
void _adaptiveVerticalAnticausalFilter_multGain(float *outputFrame, const unsigned int IDcolumnStart, const unsigned int IDcolumnEnd);
|
|
void _computeGradient(const float *luminance);
|
|
void _normalizeOutputs_0_maxOutputValue(void);
|
|
|
|
// color space transform
|
|
void _applyImageColorSpaceConversion(const std::valarray<float> &inputFrame, std::valarray<float> &outputFrame, const float *transformTable);
|
|
|
|
#ifdef MAKE_PARALLEL
|
|
/******************************************************
|
|
** IF some parallelizing thread methods are available, then, main loops are parallelized using these functors
|
|
** ==> main idea paralellise main filters loops, then, only the most used methods are parallelized... TODO : increase the number of parallelised methods as necessary
|
|
** ==> functors names = Parallel_$$$ where $$$= the name of the serial method that is parallelised
|
|
** ==> functors constructors can differ from the parameters used with their related serial functions
|
|
*/
|
|
|
|
/* Template :
|
|
class Parallel_ : public cv::ParallelLoopBody
|
|
{
|
|
private:
|
|
|
|
public:
|
|
Parallel_()
|
|
: {}
|
|
|
|
virtual void operator()( const cv::Range& r ) const {
|
|
|
|
}
|
|
}:
|
|
*/
|
|
class Parallel_adaptiveHorizontalCausalFilter_addInput: public cv::ParallelLoopBody
|
|
{
|
|
private:
|
|
float *outputFrame;
|
|
const float *inputFrame, *imageGradient;
|
|
unsigned int nbColumns;
|
|
public:
|
|
Parallel_adaptiveHorizontalCausalFilter_addInput(const float *inputImg, float *bufferToProcess, const float *imageGrad, const unsigned int nbCols)
|
|
:outputFrame(bufferToProcess), inputFrame(inputImg), imageGradient(imageGrad), nbColumns(nbCols) {};
|
|
|
|
virtual void operator()( const Range& r ) const {
|
|
register float* outputPTR=outputFrame+r.start*nbColumns;
|
|
register const float* inputPTR=inputFrame+r.start*nbColumns;
|
|
register const float *imageGradientPTR= imageGradient+r.start*nbColumns;
|
|
for (int IDrow=r.start; IDrow!=r.end; ++IDrow)
|
|
{
|
|
register float result=0;
|
|
for (unsigned int index=0; index<nbColumns; ++index)
|
|
{
|
|
result = *(inputPTR++) + (*imageGradientPTR++)* result;
|
|
*(outputPTR++) = result;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class Parallel_adaptiveVerticalAnticausalFilter_multGain: public cv::ParallelLoopBody
|
|
{
|
|
private:
|
|
float *outputFrame;
|
|
const float *imageGradient;
|
|
unsigned int nbRows, nbColumns;
|
|
float filterParam_gain;
|
|
public:
|
|
Parallel_adaptiveVerticalAnticausalFilter_multGain(float *bufferToProcess, const float *imageGrad, const unsigned int nbRws, const unsigned int nbCols, const float gain)
|
|
:outputFrame(bufferToProcess), imageGradient(imageGrad), nbRows(nbRws), nbColumns(nbCols), filterParam_gain(gain){}
|
|
|
|
virtual void operator()( const Range& r ) const {
|
|
float* offset=outputFrame+nbColumns*nbRows-nbColumns;
|
|
const float* gradOffset= imageGradient+nbColumns*nbRows-nbColumns;
|
|
for (int IDcolumn=r.start; IDcolumn!=r.end; ++IDcolumn)
|
|
{
|
|
register float result=0;
|
|
register float *outputPTR=offset+IDcolumn;
|
|
register const float *imageGradientPTR=gradOffset+IDcolumn;
|
|
for (unsigned int index=0; index<nbRows; ++index)
|
|
{
|
|
result = *(outputPTR) + *(imageGradientPTR) * result;
|
|
*(outputPTR) = filterParam_gain*result;
|
|
outputPTR-=nbColumns;
|
|
imageGradientPTR-=nbColumns;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
#endif
|
|
};
|
|
}
|
|
|
|
#endif /*RETINACOLOR_HPP_*/
|
|
|
|
|