836 lines
22 KiB
C++
836 lines
22 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/*
|
|
* cvhaarclassifier.cpp
|
|
*
|
|
* haar classifiers (stump, CART, stage, cascade)
|
|
*/
|
|
|
|
#include "_cvhaartraining.h"
|
|
|
|
|
|
CvIntHaarClassifier* icvCreateCARTHaarClassifier( int count )
|
|
{
|
|
CvCARTHaarClassifier* cart;
|
|
size_t datasize;
|
|
|
|
datasize = sizeof( *cart ) +
|
|
( sizeof( int ) +
|
|
sizeof( CvTHaarFeature ) + sizeof( CvFastHaarFeature ) +
|
|
sizeof( float ) + sizeof( int ) + sizeof( int ) ) * count +
|
|
sizeof( float ) * (count + 1);
|
|
|
|
cart = (CvCARTHaarClassifier*) cvAlloc( datasize );
|
|
memset( cart, 0, datasize );
|
|
|
|
cart->feature = (CvTHaarFeature*) (cart + 1);
|
|
cart->fastfeature = (CvFastHaarFeature*) (cart->feature + count);
|
|
cart->threshold = (float*) (cart->fastfeature + count);
|
|
cart->left = (int*) (cart->threshold + count);
|
|
cart->right = (int*) (cart->left + count);
|
|
cart->val = (float*) (cart->right + count);
|
|
cart->compidx = (int*) (cart->val + count + 1 );
|
|
cart->count = count;
|
|
cart->eval = icvEvalCARTHaarClassifier;
|
|
cart->save = icvSaveCARTHaarClassifier;
|
|
cart->release = icvReleaseHaarClassifier;
|
|
|
|
return (CvIntHaarClassifier*) cart;
|
|
}
|
|
|
|
|
|
void icvReleaseHaarClassifier( CvIntHaarClassifier** classifier )
|
|
{
|
|
cvFree( classifier );
|
|
*classifier = NULL;
|
|
}
|
|
|
|
|
|
void icvInitCARTHaarClassifier( CvCARTHaarClassifier* carthaar, CvCARTClassifier* cart,
|
|
CvIntHaarFeatures* intHaarFeatures )
|
|
{
|
|
int i;
|
|
|
|
for( i = 0; i < cart->count; i++ )
|
|
{
|
|
carthaar->feature[i] = intHaarFeatures->feature[cart->compidx[i]];
|
|
carthaar->fastfeature[i] = intHaarFeatures->fastfeature[cart->compidx[i]];
|
|
carthaar->threshold[i] = cart->threshold[i];
|
|
carthaar->left[i] = cart->left[i];
|
|
carthaar->right[i] = cart->right[i];
|
|
carthaar->val[i] = cart->val[i];
|
|
carthaar->compidx[i] = cart->compidx[i];
|
|
}
|
|
carthaar->count = cart->count;
|
|
carthaar->val[cart->count] = cart->val[cart->count];
|
|
}
|
|
|
|
|
|
float icvEvalCARTHaarClassifier( CvIntHaarClassifier* classifier,
|
|
sum_type* sum, sum_type* tilted, float normfactor )
|
|
{
|
|
int idx = 0;
|
|
|
|
do
|
|
{
|
|
if( cvEvalFastHaarFeature(
|
|
((CvCARTHaarClassifier*) classifier)->fastfeature + idx, sum, tilted )
|
|
< (((CvCARTHaarClassifier*) classifier)->threshold[idx] * normfactor) )
|
|
{
|
|
idx = ((CvCARTHaarClassifier*) classifier)->left[idx];
|
|
}
|
|
else
|
|
{
|
|
idx = ((CvCARTHaarClassifier*) classifier)->right[idx];
|
|
}
|
|
} while( idx > 0 );
|
|
|
|
return ((CvCARTHaarClassifier*) classifier)->val[-idx];
|
|
}
|
|
|
|
|
|
CvIntHaarClassifier* icvCreateStageHaarClassifier( int count, float threshold )
|
|
{
|
|
CvStageHaarClassifier* stage;
|
|
size_t datasize;
|
|
|
|
datasize = sizeof( *stage ) + sizeof( CvIntHaarClassifier* ) * count;
|
|
stage = (CvStageHaarClassifier*) cvAlloc( datasize );
|
|
memset( stage, 0, datasize );
|
|
|
|
stage->count = count;
|
|
stage->threshold = threshold;
|
|
stage->classifier = (CvIntHaarClassifier**) (stage + 1);
|
|
|
|
stage->eval = icvEvalStageHaarClassifier;
|
|
stage->save = icvSaveStageHaarClassifier;
|
|
stage->release = icvReleaseStageHaarClassifier;
|
|
|
|
return (CvIntHaarClassifier*) stage;
|
|
}
|
|
|
|
|
|
void icvReleaseStageHaarClassifier( CvIntHaarClassifier** classifier )
|
|
{
|
|
int i;
|
|
|
|
for( i = 0; i < ((CvStageHaarClassifier*) *classifier)->count; i++ )
|
|
{
|
|
if( ((CvStageHaarClassifier*) *classifier)->classifier[i] != NULL )
|
|
{
|
|
((CvStageHaarClassifier*) *classifier)->classifier[i]->release(
|
|
&(((CvStageHaarClassifier*) *classifier)->classifier[i]) );
|
|
}
|
|
}
|
|
|
|
cvFree( classifier );
|
|
*classifier = NULL;
|
|
}
|
|
|
|
|
|
float icvEvalStageHaarClassifier( CvIntHaarClassifier* classifier,
|
|
sum_type* sum, sum_type* tilted, float normfactor )
|
|
{
|
|
int i;
|
|
float stage_sum;
|
|
|
|
stage_sum = 0.0F;
|
|
for( i = 0; i < ((CvStageHaarClassifier*) classifier)->count; i++ )
|
|
{
|
|
stage_sum +=
|
|
((CvStageHaarClassifier*) classifier)->classifier[i]->eval(
|
|
((CvStageHaarClassifier*) classifier)->classifier[i],
|
|
sum, tilted, normfactor );
|
|
}
|
|
|
|
return stage_sum;
|
|
}
|
|
|
|
|
|
CvIntHaarClassifier* icvCreateCascadeHaarClassifier( int count )
|
|
{
|
|
CvCascadeHaarClassifier* ptr;
|
|
size_t datasize;
|
|
|
|
datasize = sizeof( *ptr ) + sizeof( CvIntHaarClassifier* ) * count;
|
|
ptr = (CvCascadeHaarClassifier*) cvAlloc( datasize );
|
|
memset( ptr, 0, datasize );
|
|
|
|
ptr->count = count;
|
|
ptr->classifier = (CvIntHaarClassifier**) (ptr + 1);
|
|
|
|
ptr->eval = icvEvalCascadeHaarClassifier;
|
|
ptr->save = NULL;
|
|
ptr->release = icvReleaseCascadeHaarClassifier;
|
|
|
|
return (CvIntHaarClassifier*) ptr;
|
|
}
|
|
|
|
|
|
void icvReleaseCascadeHaarClassifier( CvIntHaarClassifier** classifier )
|
|
{
|
|
int i;
|
|
|
|
for( i = 0; i < ((CvCascadeHaarClassifier*) *classifier)->count; i++ )
|
|
{
|
|
if( ((CvCascadeHaarClassifier*) *classifier)->classifier[i] != NULL )
|
|
{
|
|
((CvCascadeHaarClassifier*) *classifier)->classifier[i]->release(
|
|
&(((CvCascadeHaarClassifier*) *classifier)->classifier[i]) );
|
|
}
|
|
}
|
|
|
|
cvFree( classifier );
|
|
*classifier = NULL;
|
|
}
|
|
|
|
|
|
float icvEvalCascadeHaarClassifier( CvIntHaarClassifier* classifier,
|
|
sum_type* sum, sum_type* tilted, float normfactor )
|
|
{
|
|
int i;
|
|
|
|
for( i = 0; i < ((CvCascadeHaarClassifier*) classifier)->count; i++ )
|
|
{
|
|
if( ((CvCascadeHaarClassifier*) classifier)->classifier[i]->eval(
|
|
((CvCascadeHaarClassifier*) classifier)->classifier[i],
|
|
sum, tilted, normfactor )
|
|
< ( ((CvStageHaarClassifier*)
|
|
((CvCascadeHaarClassifier*) classifier)->classifier[i])->threshold
|
|
- CV_THRESHOLD_EPS) )
|
|
{
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
return 1.0;
|
|
}
|
|
|
|
|
|
void icvSaveHaarFeature( CvTHaarFeature* feature, FILE* file )
|
|
{
|
|
fprintf( file, "%d\n", ( ( feature->rect[2].weight == 0.0F ) ? 2 : 3) );
|
|
fprintf( file, "%d %d %d %d %d %d\n",
|
|
feature->rect[0].r.x,
|
|
feature->rect[0].r.y,
|
|
feature->rect[0].r.width,
|
|
feature->rect[0].r.height,
|
|
0,
|
|
(int) (feature->rect[0].weight) );
|
|
fprintf( file, "%d %d %d %d %d %d\n",
|
|
feature->rect[1].r.x,
|
|
feature->rect[1].r.y,
|
|
feature->rect[1].r.width,
|
|
feature->rect[1].r.height,
|
|
0,
|
|
(int) (feature->rect[1].weight) );
|
|
if( feature->rect[2].weight != 0.0F )
|
|
{
|
|
fprintf( file, "%d %d %d %d %d %d\n",
|
|
feature->rect[2].r.x,
|
|
feature->rect[2].r.y,
|
|
feature->rect[2].r.width,
|
|
feature->rect[2].r.height,
|
|
0,
|
|
(int) (feature->rect[2].weight) );
|
|
}
|
|
fprintf( file, "%s\n", &(feature->desc[0]) );
|
|
}
|
|
|
|
|
|
void icvLoadHaarFeature( CvTHaarFeature* feature, FILE* file )
|
|
{
|
|
int nrect;
|
|
int j;
|
|
int tmp;
|
|
int weight;
|
|
|
|
nrect = 0;
|
|
int values_read = fscanf( file, "%d", &nrect );
|
|
CV_Assert(values_read == 1);
|
|
|
|
assert( nrect <= CV_HAAR_FEATURE_MAX );
|
|
|
|
for( j = 0; j < nrect; j++ )
|
|
{
|
|
values_read = fscanf( file, "%d %d %d %d %d %d",
|
|
&(feature->rect[j].r.x),
|
|
&(feature->rect[j].r.y),
|
|
&(feature->rect[j].r.width),
|
|
&(feature->rect[j].r.height),
|
|
&tmp, &weight );
|
|
CV_Assert(values_read == 6);
|
|
feature->rect[j].weight = (float) weight;
|
|
}
|
|
for( j = nrect; j < CV_HAAR_FEATURE_MAX; j++ )
|
|
{
|
|
feature->rect[j].r.x = 0;
|
|
feature->rect[j].r.y = 0;
|
|
feature->rect[j].r.width = 0;
|
|
feature->rect[j].r.height = 0;
|
|
feature->rect[j].weight = 0.0f;
|
|
}
|
|
values_read = fscanf( file, "%s", &(feature->desc[0]) );
|
|
CV_Assert(values_read == 1);
|
|
feature->tilted = ( feature->desc[0] == 't' );
|
|
}
|
|
|
|
|
|
void icvSaveCARTHaarClassifier( CvIntHaarClassifier* classifier, FILE* file )
|
|
{
|
|
int i;
|
|
int count;
|
|
|
|
count = ((CvCARTHaarClassifier*) classifier)->count;
|
|
fprintf( file, "%d\n", count );
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
icvSaveHaarFeature( &(((CvCARTHaarClassifier*) classifier)->feature[i]), file );
|
|
fprintf( file, "%e %d %d\n",
|
|
((CvCARTHaarClassifier*) classifier)->threshold[i],
|
|
((CvCARTHaarClassifier*) classifier)->left[i],
|
|
((CvCARTHaarClassifier*) classifier)->right[i] );
|
|
}
|
|
for( i = 0; i <= count; i++ )
|
|
{
|
|
fprintf( file, "%e ", ((CvCARTHaarClassifier*) classifier)->val[i] );
|
|
}
|
|
fprintf( file, "\n" );
|
|
}
|
|
|
|
|
|
CvIntHaarClassifier* icvLoadCARTHaarClassifier( FILE* file, int step )
|
|
{
|
|
CvCARTHaarClassifier* ptr;
|
|
int i;
|
|
int count;
|
|
|
|
ptr = NULL;
|
|
int values_read = fscanf( file, "%d", &count );
|
|
CV_Assert(values_read == 1);
|
|
|
|
if( count > 0 )
|
|
{
|
|
ptr = (CvCARTHaarClassifier*) icvCreateCARTHaarClassifier( count );
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
icvLoadHaarFeature( &(ptr->feature[i]), file );
|
|
values_read = fscanf( file, "%f %d %d", &(ptr->threshold[i]), &(ptr->left[i]),
|
|
&(ptr->right[i]) );
|
|
CV_Assert(values_read == 3);
|
|
}
|
|
for( i = 0; i <= count; i++ )
|
|
{
|
|
values_read = fscanf( file, "%f", &(ptr->val[i]) );
|
|
CV_Assert(values_read == 1);
|
|
}
|
|
icvConvertToFastHaarFeature( ptr->feature, ptr->fastfeature, ptr->count, step );
|
|
}
|
|
|
|
return (CvIntHaarClassifier*) ptr;
|
|
}
|
|
|
|
|
|
void icvSaveStageHaarClassifier( CvIntHaarClassifier* classifier, FILE* file )
|
|
{
|
|
int count;
|
|
int i;
|
|
float threshold;
|
|
|
|
count = ((CvStageHaarClassifier*) classifier)->count;
|
|
fprintf( file, "%d\n", count );
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
((CvStageHaarClassifier*) classifier)->classifier[i]->save(
|
|
((CvStageHaarClassifier*) classifier)->classifier[i], file );
|
|
}
|
|
|
|
threshold = ((CvStageHaarClassifier*) classifier)->threshold;
|
|
|
|
/* to be compatible with the previous implementation */
|
|
/* threshold = 2.0F * ((CvStageHaarClassifier*) classifier)->threshold - count; */
|
|
|
|
fprintf( file, "%e\n", threshold );
|
|
}
|
|
|
|
|
|
|
|
CvIntHaarClassifier* icvLoadCARTStageHaarClassifierF( FILE* file, int step )
|
|
{
|
|
CvStageHaarClassifier* ptr = NULL;
|
|
|
|
//CV_FUNCNAME( "icvLoadCARTStageHaarClassifierF" );
|
|
|
|
__BEGIN__;
|
|
|
|
if( file != NULL )
|
|
{
|
|
int count;
|
|
int i;
|
|
float threshold;
|
|
|
|
count = 0;
|
|
int values_read = fscanf( file, "%d", &count );
|
|
CV_Assert(values_read == 1);
|
|
if( count > 0 )
|
|
{
|
|
ptr = (CvStageHaarClassifier*) icvCreateStageHaarClassifier( count, 0.0F );
|
|
for( i = 0; i < count; i++ )
|
|
{
|
|
ptr->classifier[i] = icvLoadCARTHaarClassifier( file, step );
|
|
}
|
|
|
|
values_read = fscanf( file, "%f", &threshold );
|
|
CV_Assert(values_read == 1);
|
|
|
|
ptr->threshold = threshold;
|
|
/* to be compatible with the previous implementation */
|
|
/* ptr->threshold = 0.5F * (threshold + count); */
|
|
}
|
|
if( feof( file ) )
|
|
{
|
|
ptr->release( (CvIntHaarClassifier**) &ptr );
|
|
ptr = NULL;
|
|
}
|
|
}
|
|
|
|
__END__;
|
|
|
|
return (CvIntHaarClassifier*) ptr;
|
|
}
|
|
|
|
|
|
CvIntHaarClassifier* icvLoadCARTStageHaarClassifier( const char* filename, int step )
|
|
{
|
|
CvIntHaarClassifier* ptr = NULL;
|
|
|
|
CV_FUNCNAME( "icvLoadCARTStageHaarClassifier" );
|
|
|
|
__BEGIN__;
|
|
|
|
FILE* file;
|
|
|
|
file = fopen( filename, "r" );
|
|
if( file )
|
|
{
|
|
CV_CALL( ptr = icvLoadCARTStageHaarClassifierF( file, step ) );
|
|
fclose( file );
|
|
}
|
|
|
|
__END__;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/* tree cascade classifier */
|
|
|
|
/* evaluates a tree cascade classifier */
|
|
|
|
float icvEvalTreeCascadeClassifier( CvIntHaarClassifier* classifier,
|
|
sum_type* sum, sum_type* tilted, float normfactor )
|
|
{
|
|
CvTreeCascadeNode* ptr;
|
|
|
|
ptr = ((CvTreeCascadeClassifier*) classifier)->root;
|
|
|
|
while( ptr )
|
|
{
|
|
if( ptr->stage->eval( (CvIntHaarClassifier*) ptr->stage,
|
|
sum, tilted, normfactor )
|
|
>= ptr->stage->threshold - CV_THRESHOLD_EPS )
|
|
{
|
|
ptr = ptr->child;
|
|
}
|
|
else
|
|
{
|
|
while( ptr && ptr->next == NULL ) ptr = ptr->parent;
|
|
if( ptr == NULL ) return 0.0F;
|
|
ptr = ptr->next;
|
|
}
|
|
}
|
|
|
|
return 1.0F;
|
|
}
|
|
|
|
/* sets path int the tree form the root to the leaf node */
|
|
|
|
void icvSetLeafNode( CvTreeCascadeClassifier* tcc, CvTreeCascadeNode* leaf )
|
|
{
|
|
CV_FUNCNAME( "icvSetLeafNode" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvTreeCascadeNode* ptr;
|
|
|
|
ptr = NULL;
|
|
while( leaf )
|
|
{
|
|
leaf->child_eval = ptr;
|
|
ptr = leaf;
|
|
leaf = leaf->parent;
|
|
}
|
|
|
|
leaf = tcc->root;
|
|
while( leaf && leaf != ptr ) leaf = leaf->next;
|
|
if( leaf != ptr )
|
|
CV_ERROR( CV_StsError, "Invalid tcc or leaf node." );
|
|
|
|
tcc->root_eval = ptr;
|
|
|
|
__END__;
|
|
}
|
|
|
|
/* evaluates a tree cascade classifier. used in filtering */
|
|
|
|
float icvEvalTreeCascadeClassifierFilter( CvIntHaarClassifier* classifier, sum_type* sum,
|
|
sum_type* tilted, float normfactor )
|
|
{
|
|
CvTreeCascadeNode* ptr;
|
|
CvTreeCascadeClassifier* tree;
|
|
|
|
tree = (CvTreeCascadeClassifier*) classifier;
|
|
|
|
|
|
|
|
ptr = ((CvTreeCascadeClassifier*) classifier)->root_eval;
|
|
while( ptr )
|
|
{
|
|
if( ptr->stage->eval( (CvIntHaarClassifier*) ptr->stage,
|
|
sum, tilted, normfactor )
|
|
< ptr->stage->threshold - CV_THRESHOLD_EPS )
|
|
{
|
|
return 0.0F;
|
|
}
|
|
ptr = ptr->child_eval;
|
|
}
|
|
|
|
return 1.0F;
|
|
}
|
|
|
|
/* creates tree cascade node */
|
|
|
|
CvTreeCascadeNode* icvCreateTreeCascadeNode()
|
|
{
|
|
CvTreeCascadeNode* ptr = NULL;
|
|
|
|
CV_FUNCNAME( "icvCreateTreeCascadeNode" );
|
|
|
|
__BEGIN__;
|
|
size_t data_size;
|
|
|
|
data_size = sizeof( *ptr );
|
|
CV_CALL( ptr = (CvTreeCascadeNode*) cvAlloc( data_size ) );
|
|
memset( ptr, 0, data_size );
|
|
|
|
__END__;
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/* releases all tree cascade nodes accessible via links */
|
|
|
|
void icvReleaseTreeCascadeNodes( CvTreeCascadeNode** node )
|
|
{
|
|
//CV_FUNCNAME( "icvReleaseTreeCascadeNodes" );
|
|
|
|
__BEGIN__;
|
|
|
|
if( node && *node )
|
|
{
|
|
CvTreeCascadeNode* ptr;
|
|
CvTreeCascadeNode* ptr_;
|
|
|
|
ptr = *node;
|
|
|
|
while( ptr )
|
|
{
|
|
while( ptr->child ) ptr = ptr->child;
|
|
|
|
if( ptr->stage ) ptr->stage->release( (CvIntHaarClassifier**) &ptr->stage );
|
|
ptr_ = ptr;
|
|
|
|
while( ptr && ptr->next == NULL ) ptr = ptr->parent;
|
|
if( ptr ) ptr = ptr->next;
|
|
|
|
cvFree( &ptr_ );
|
|
}
|
|
}
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
/* releases tree cascade classifier */
|
|
|
|
void icvReleaseTreeCascadeClassifier( CvIntHaarClassifier** classifier )
|
|
{
|
|
if( classifier && *classifier )
|
|
{
|
|
icvReleaseTreeCascadeNodes( &((CvTreeCascadeClassifier*) *classifier)->root );
|
|
cvFree( classifier );
|
|
*classifier = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void icvPrintTreeCascade( CvTreeCascadeNode* root )
|
|
{
|
|
//CV_FUNCNAME( "icvPrintTreeCascade" );
|
|
|
|
__BEGIN__;
|
|
|
|
CvTreeCascadeNode* node;
|
|
CvTreeCascadeNode* n;
|
|
char buf0[256];
|
|
char buf[256];
|
|
int level;
|
|
int i;
|
|
int max_level;
|
|
|
|
node = root;
|
|
level = max_level = 0;
|
|
while( node )
|
|
{
|
|
while( node->child ) { node = node->child; level++; }
|
|
if( level > max_level ) { max_level = level; }
|
|
while( node && !node->next ) { node = node->parent; level--; }
|
|
if( node ) node = node->next;
|
|
}
|
|
|
|
printf( "\nTree Classifier\n" );
|
|
printf( "Stage\n" );
|
|
for( i = 0; i <= max_level; i++ ) printf( "+---" );
|
|
printf( "+\n" );
|
|
for( i = 0; i <= max_level; i++ ) printf( "|%3d", i );
|
|
printf( "|\n" );
|
|
for( i = 0; i <= max_level; i++ ) printf( "+---" );
|
|
printf( "+\n\n" );
|
|
|
|
node = root;
|
|
|
|
buf[0] = 0;
|
|
while( node )
|
|
{
|
|
sprintf( buf + strlen( buf ), "%3d", node->idx );
|
|
while( node->child )
|
|
{
|
|
node = node->child;
|
|
sprintf( buf + strlen( buf ),
|
|
((node->idx < 10) ? "---%d" : ((node->idx < 100) ? "--%d" : "-%d")),
|
|
node->idx );
|
|
}
|
|
printf( " %s\n", buf );
|
|
|
|
while( node && !node->next ) { node = node->parent; }
|
|
if( node )
|
|
{
|
|
node = node->next;
|
|
|
|
n = node->parent;
|
|
buf[0] = 0;
|
|
while( n )
|
|
{
|
|
if( n->next )
|
|
sprintf( buf0, " | %s", buf );
|
|
else
|
|
sprintf( buf0, " %s", buf );
|
|
strcpy( buf, buf0 );
|
|
n = n->parent;
|
|
}
|
|
printf( " %s |\n", buf );
|
|
}
|
|
}
|
|
printf( "\n" );
|
|
fflush( stdout );
|
|
|
|
__END__;
|
|
}
|
|
|
|
|
|
|
|
CvIntHaarClassifier* icvLoadTreeCascadeClassifier( const char* filename, int step,
|
|
int* splits )
|
|
{
|
|
CvTreeCascadeClassifier* ptr = NULL;
|
|
CvTreeCascadeNode** nodes = NULL;
|
|
|
|
CV_FUNCNAME( "icvLoadTreeCascadeClassifier" );
|
|
|
|
__BEGIN__;
|
|
|
|
size_t data_size;
|
|
CvStageHaarClassifier* stage;
|
|
char stage_name[PATH_MAX];
|
|
char* suffix;
|
|
int i, num;
|
|
FILE* f;
|
|
int result, parent=0, next=0;
|
|
int stub;
|
|
|
|
if( !splits ) splits = &stub;
|
|
|
|
*splits = 0;
|
|
|
|
data_size = sizeof( *ptr );
|
|
|
|
CV_CALL( ptr = (CvTreeCascadeClassifier*) cvAlloc( data_size ) );
|
|
memset( ptr, 0, data_size );
|
|
|
|
ptr->eval = icvEvalTreeCascadeClassifier;
|
|
ptr->release = icvReleaseTreeCascadeClassifier;
|
|
|
|
sprintf( stage_name, "%s/", filename );
|
|
suffix = stage_name + strlen( stage_name );
|
|
|
|
for( i = 0; ; i++ )
|
|
{
|
|
sprintf( suffix, "%d/%s", i, CV_STAGE_CART_FILE_NAME );
|
|
f = fopen( stage_name, "r" );
|
|
if( !f ) break;
|
|
fclose( f );
|
|
}
|
|
num = i;
|
|
|
|
if( num < 1 ) EXIT;
|
|
|
|
data_size = sizeof( *nodes ) * num;
|
|
CV_CALL( nodes = (CvTreeCascadeNode**) cvAlloc( data_size ) );
|
|
|
|
for( i = 0; i < num; i++ )
|
|
{
|
|
sprintf( suffix, "%d/%s", i, CV_STAGE_CART_FILE_NAME );
|
|
f = fopen( stage_name, "r" );
|
|
CV_CALL( stage = (CvStageHaarClassifier*)
|
|
icvLoadCARTStageHaarClassifierF( f, step ) );
|
|
|
|
result = ( f && stage ) ? fscanf( f, "%d%d", &parent, &next ) : 0;
|
|
if( f ) fclose( f );
|
|
|
|
if( result != 2 )
|
|
{
|
|
num = i;
|
|
break;
|
|
}
|
|
|
|
printf( "Stage %d loaded\n", i );
|
|
|
|
if( parent >= i || (next != -1 && next != i + 1) )
|
|
CV_ERROR( CV_StsError, "Invalid tree links" );
|
|
|
|
CV_CALL( nodes[i] = icvCreateTreeCascadeNode() );
|
|
nodes[i]->stage = stage;
|
|
nodes[i]->idx = i;
|
|
nodes[i]->parent = (parent != -1 ) ? nodes[parent] : NULL;
|
|
nodes[i]->next = ( next != -1 ) ? nodes[i] : NULL;
|
|
nodes[i]->child = NULL;
|
|
}
|
|
for( i = 0; i < num; i++ )
|
|
{
|
|
if( nodes[i]->next )
|
|
{
|
|
(*splits)++;
|
|
nodes[i]->next = nodes[i+1];
|
|
}
|
|
if( nodes[i]->parent && nodes[i]->parent->child == NULL )
|
|
{
|
|
nodes[i]->parent->child = nodes[i];
|
|
}
|
|
}
|
|
ptr->root = nodes[0];
|
|
ptr->next_idx = num;
|
|
|
|
__END__;
|
|
|
|
cvFree( &nodes );
|
|
|
|
return (CvIntHaarClassifier*) ptr;
|
|
}
|
|
|
|
|
|
CvTreeCascadeNode* icvFindDeepestLeaves( CvTreeCascadeClassifier* tcc )
|
|
{
|
|
CvTreeCascadeNode* leaves;
|
|
|
|
//CV_FUNCNAME( "icvFindDeepestLeaves" );
|
|
|
|
__BEGIN__;
|
|
|
|
int level, cur_level;
|
|
CvTreeCascadeNode* ptr;
|
|
CvTreeCascadeNode* last;
|
|
|
|
leaves = last = NULL;
|
|
|
|
ptr = tcc->root;
|
|
level = -1;
|
|
cur_level = 0;
|
|
|
|
/* find leaves with maximal level */
|
|
while( ptr )
|
|
{
|
|
if( ptr->child ) { ptr = ptr->child; cur_level++; }
|
|
else
|
|
{
|
|
if( cur_level == level )
|
|
{
|
|
last->next_same_level = ptr;
|
|
ptr->next_same_level = NULL;
|
|
last = ptr;
|
|
}
|
|
if( cur_level > level )
|
|
{
|
|
level = cur_level;
|
|
leaves = last = ptr;
|
|
ptr->next_same_level = NULL;
|
|
}
|
|
while( ptr && ptr->next == NULL ) { ptr = ptr->parent; cur_level--; }
|
|
if( ptr ) ptr = ptr->next;
|
|
}
|
|
}
|
|
|
|
__END__;
|
|
|
|
return leaves;
|
|
}
|
|
|
|
/* End of file. */
|