352 lines
12 KiB
C
352 lines
12 KiB
C
/* slatrd.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static real c_b5 = -1.f;
|
|
static real c_b6 = 1.f;
|
|
static integer c__1 = 1;
|
|
static real c_b16 = 0.f;
|
|
|
|
/* Subroutine */ int slatrd_(char *uplo, integer *n, integer *nb, real *a,
|
|
integer *lda, real *e, real *tau, real *w, integer *ldw)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer i__, iw;
|
|
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
|
|
real alpha;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
|
|
sgemv_(char *, integer *, integer *, real *, real *, integer *,
|
|
real *, integer *, real *, real *, integer *), saxpy_(
|
|
integer *, real *, real *, integer *, real *, integer *), ssymv_(
|
|
char *, integer *, real *, real *, integer *, real *, integer *,
|
|
real *, real *, integer *), slarfg_(integer *, real *,
|
|
real *, integer *, real *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLATRD reduces NB rows and columns of a real symmetric matrix A to */
|
|
/* symmetric tridiagonal form by an orthogonal similarity */
|
|
/* transformation Q' * A * Q, and returns the matrices V and W which are */
|
|
/* needed to apply the transformation to the unreduced part of A. */
|
|
|
|
/* If UPLO = 'U', SLATRD reduces the last NB rows and columns of a */
|
|
/* matrix, of which the upper triangle is supplied; */
|
|
/* if UPLO = 'L', SLATRD reduces the first NB rows and columns of a */
|
|
/* matrix, of which the lower triangle is supplied. */
|
|
|
|
/* This is an auxiliary routine called by SSYTRD. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
/* Specifies whether the upper or lower triangular part of the */
|
|
/* symmetric matrix A is stored: */
|
|
/* = 'U': Upper triangular */
|
|
/* = 'L': Lower triangular */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The order of the matrix A. */
|
|
|
|
/* NB (input) INTEGER */
|
|
/* The number of rows and columns to be reduced. */
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
|
/* n-by-n upper triangular part of A contains the upper */
|
|
/* triangular part of the matrix A, and the strictly lower */
|
|
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* leading n-by-n lower triangular part of A contains the lower */
|
|
/* triangular part of the matrix A, and the strictly upper */
|
|
/* triangular part of A is not referenced. */
|
|
/* On exit: */
|
|
/* if UPLO = 'U', the last NB columns have been reduced to */
|
|
/* tridiagonal form, with the diagonal elements overwriting */
|
|
/* the diagonal elements of A; the elements above the diagonal */
|
|
/* with the array TAU, represent the orthogonal matrix Q as a */
|
|
/* product of elementary reflectors; */
|
|
/* if UPLO = 'L', the first NB columns have been reduced to */
|
|
/* tridiagonal form, with the diagonal elements overwriting */
|
|
/* the diagonal elements of A; the elements below the diagonal */
|
|
/* with the array TAU, represent the orthogonal matrix Q as a */
|
|
/* product of elementary reflectors. */
|
|
/* See Further Details. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= (1,N). */
|
|
|
|
/* E (output) REAL array, dimension (N-1) */
|
|
/* If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */
|
|
/* elements of the last NB columns of the reduced matrix; */
|
|
/* if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */
|
|
/* the first NB columns of the reduced matrix. */
|
|
|
|
/* TAU (output) REAL array, dimension (N-1) */
|
|
/* The scalar factors of the elementary reflectors, stored in */
|
|
/* TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */
|
|
/* See Further Details. */
|
|
|
|
/* W (output) REAL array, dimension (LDW,NB) */
|
|
/* The n-by-nb matrix W required to update the unreduced part */
|
|
/* of A. */
|
|
|
|
/* LDW (input) INTEGER */
|
|
/* The leading dimension of the array W. LDW >= max(1,N). */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* If UPLO = 'U', the matrix Q is represented as a product of elementary */
|
|
/* reflectors */
|
|
|
|
/* Q = H(n) H(n-1) . . . H(n-nb+1). */
|
|
|
|
/* Each H(i) has the form */
|
|
|
|
/* H(i) = I - tau * v * v' */
|
|
|
|
/* where tau is a real scalar, and v is a real vector with */
|
|
/* v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */
|
|
/* and tau in TAU(i-1). */
|
|
|
|
/* If UPLO = 'L', the matrix Q is represented as a product of elementary */
|
|
/* reflectors */
|
|
|
|
/* Q = H(1) H(2) . . . H(nb). */
|
|
|
|
/* Each H(i) has the form */
|
|
|
|
/* H(i) = I - tau * v * v' */
|
|
|
|
/* where tau is a real scalar, and v is a real vector with */
|
|
/* v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
|
|
/* and tau in TAU(i). */
|
|
|
|
/* The elements of the vectors v together form the n-by-nb matrix V */
|
|
/* which is needed, with W, to apply the transformation to the unreduced */
|
|
/* part of the matrix, using a symmetric rank-2k update of the form: */
|
|
/* A := A - V*W' - W*V'. */
|
|
|
|
/* The contents of A on exit are illustrated by the following examples */
|
|
/* with n = 5 and nb = 2: */
|
|
|
|
/* if UPLO = 'U': if UPLO = 'L': */
|
|
|
|
/* ( a a a v4 v5 ) ( d ) */
|
|
/* ( a a v4 v5 ) ( 1 d ) */
|
|
/* ( a 1 v5 ) ( v1 1 a ) */
|
|
/* ( d 1 ) ( v1 v2 a a ) */
|
|
/* ( d ) ( v1 v2 a a a ) */
|
|
|
|
/* where d denotes a diagonal element of the reduced matrix, a denotes */
|
|
/* an element of the original matrix that is unchanged, and vi denotes */
|
|
/* an element of the vector defining H(i). */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Quick return if possible */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--e;
|
|
--tau;
|
|
w_dim1 = *ldw;
|
|
w_offset = 1 + w_dim1;
|
|
w -= w_offset;
|
|
|
|
/* Function Body */
|
|
if (*n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (lsame_(uplo, "U")) {
|
|
|
|
/* Reduce last NB columns of upper triangle */
|
|
|
|
i__1 = *n - *nb + 1;
|
|
for (i__ = *n; i__ >= i__1; --i__) {
|
|
iw = i__ - *n + *nb;
|
|
if (i__ < *n) {
|
|
|
|
/* Update A(1:i,i) */
|
|
|
|
i__2 = *n - i__;
|
|
sgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) *
|
|
a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, &
|
|
c_b6, &a[i__ * a_dim1 + 1], &c__1);
|
|
i__2 = *n - i__;
|
|
sgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) *
|
|
w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, &
|
|
c_b6, &a[i__ * a_dim1 + 1], &c__1);
|
|
}
|
|
if (i__ > 1) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate */
|
|
/* A(1:i-2,i) */
|
|
|
|
i__2 = i__ - 1;
|
|
slarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 +
|
|
1], &c__1, &tau[i__ - 1]);
|
|
e[i__ - 1] = a[i__ - 1 + i__ * a_dim1];
|
|
a[i__ - 1 + i__ * a_dim1] = 1.f;
|
|
|
|
/* Compute W(1:i-1,i) */
|
|
|
|
i__2 = i__ - 1;
|
|
ssymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ *
|
|
a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], &
|
|
c__1);
|
|
if (i__ < *n) {
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) *
|
|
w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, &
|
|
c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
|
|
a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], &
|
|
c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) *
|
|
a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, &
|
|
c_b16, &w[i__ + 1 + iw * w_dim1], &c__1);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) *
|
|
w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], &
|
|
c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1);
|
|
}
|
|
i__2 = i__ - 1;
|
|
sscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1);
|
|
i__2 = i__ - 1;
|
|
alpha = tau[i__ - 1] * -.5f * sdot_(&i__2, &w[iw * w_dim1 + 1]
|
|
, &c__1, &a[i__ * a_dim1 + 1], &c__1);
|
|
i__2 = i__ - 1;
|
|
saxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw *
|
|
w_dim1 + 1], &c__1);
|
|
}
|
|
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Reduce first NB columns of lower triangle */
|
|
|
|
i__1 = *nb;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Update A(i:n,i) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda,
|
|
&w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], &
|
|
c__1);
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw,
|
|
&a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], &
|
|
c__1);
|
|
if (i__ < *n) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate */
|
|
/* A(i+2:n,i) */
|
|
|
|
i__2 = *n - i__;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 2;
|
|
slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+
|
|
i__ * a_dim1], &c__1, &tau[i__]);
|
|
e[i__] = a[i__ + 1 + i__ * a_dim1];
|
|
a[i__ + 1 + i__ * a_dim1] = 1.f;
|
|
|
|
/* Compute W(i+1:n,i) */
|
|
|
|
i__2 = *n - i__;
|
|
ssymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1]
|
|
, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
|
|
i__ + 1 + i__ * w_dim1], &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1],
|
|
ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
|
|
i__ * w_dim1 + 1], &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 +
|
|
a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
|
|
i__ + 1 + i__ * w_dim1], &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1],
|
|
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[
|
|
i__ * w_dim1 + 1], &c__1);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 +
|
|
w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[
|
|
i__ + 1 + i__ * w_dim1], &c__1);
|
|
i__2 = *n - i__;
|
|
sscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1);
|
|
i__2 = *n - i__;
|
|
alpha = tau[i__] * -.5f * sdot_(&i__2, &w[i__ + 1 + i__ *
|
|
w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1);
|
|
i__2 = *n - i__;
|
|
saxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[
|
|
i__ + 1 + i__ * w_dim1], &c__1);
|
|
}
|
|
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SLATRD */
|
|
|
|
} /* slatrd_ */
|