476 lines
14 KiB
C
476 lines
14 KiB
C
/* slaed8.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static real c_b3 = -1.f;
|
|
static integer c__1 = 1;
|
|
|
|
/* Subroutine */ int slaed8_(integer *icompq, integer *k, integer *n, integer
|
|
*qsiz, real *d__, real *q, integer *ldq, integer *indxq, real *rho,
|
|
integer *cutpnt, real *z__, real *dlamda, real *q2, integer *ldq2,
|
|
real *w, integer *perm, integer *givptr, integer *givcol, real *
|
|
givnum, integer *indxp, integer *indx, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
|
|
real r__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
real c__;
|
|
integer i__, j;
|
|
real s, t;
|
|
integer k2, n1, n2, jp, n1p1;
|
|
real eps, tau, tol;
|
|
integer jlam, imax, jmax;
|
|
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
|
|
integer *, real *, real *), sscal_(integer *, real *, real *,
|
|
integer *), scopy_(integer *, real *, integer *, real *, integer *
|
|
);
|
|
extern doublereal slapy2_(real *, real *), slamch_(char *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
extern integer isamax_(integer *, real *, integer *);
|
|
extern /* Subroutine */ int slamrg_(integer *, integer *, real *, integer
|
|
*, integer *, integer *), slacpy_(char *, integer *, integer *,
|
|
real *, integer *, real *, integer *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SLAED8 merges the two sets of eigenvalues together into a single */
|
|
/* sorted set. Then it tries to deflate the size of the problem. */
|
|
/* There are two ways in which deflation can occur: when two or more */
|
|
/* eigenvalues are close together or if there is a tiny element in the */
|
|
/* Z vector. For each such occurrence the order of the related secular */
|
|
/* equation problem is reduced by one. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* ICOMPQ (input) INTEGER */
|
|
/* = 0: Compute eigenvalues only. */
|
|
/* = 1: Compute eigenvectors of original dense symmetric matrix */
|
|
/* also. On entry, Q contains the orthogonal matrix used */
|
|
/* to reduce the original matrix to tridiagonal form. */
|
|
|
|
/* K (output) INTEGER */
|
|
/* The number of non-deflated eigenvalues, and the order of the */
|
|
/* related secular equation. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */
|
|
|
|
/* QSIZ (input) INTEGER */
|
|
/* The dimension of the orthogonal matrix used to reduce */
|
|
/* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
|
|
|
|
/* D (input/output) REAL array, dimension (N) */
|
|
/* On entry, the eigenvalues of the two submatrices to be */
|
|
/* combined. On exit, the trailing (N-K) updated eigenvalues */
|
|
/* (those which were deflated) sorted into increasing order. */
|
|
|
|
/* Q (input/output) REAL array, dimension (LDQ,N) */
|
|
/* If ICOMPQ = 0, Q is not referenced. Otherwise, */
|
|
/* on entry, Q contains the eigenvectors of the partially solved */
|
|
/* system which has been previously updated in matrix */
|
|
/* multiplies with other partially solved eigensystems. */
|
|
/* On exit, Q contains the trailing (N-K) updated eigenvectors */
|
|
/* (those which were deflated) in its last N-K columns. */
|
|
|
|
/* LDQ (input) INTEGER */
|
|
/* The leading dimension of the array Q. LDQ >= max(1,N). */
|
|
|
|
/* INDXQ (input) INTEGER array, dimension (N) */
|
|
/* The permutation which separately sorts the two sub-problems */
|
|
/* in D into ascending order. Note that elements in the second */
|
|
/* half of this permutation must first have CUTPNT added to */
|
|
/* their values in order to be accurate. */
|
|
|
|
/* RHO (input/output) REAL */
|
|
/* On entry, the off-diagonal element associated with the rank-1 */
|
|
/* cut which originally split the two submatrices which are now */
|
|
/* being recombined. */
|
|
/* On exit, RHO has been modified to the value required by */
|
|
/* SLAED3. */
|
|
|
|
/* CUTPNT (input) INTEGER */
|
|
/* The location of the last eigenvalue in the leading */
|
|
/* sub-matrix. min(1,N) <= CUTPNT <= N. */
|
|
|
|
/* Z (input) REAL array, dimension (N) */
|
|
/* On entry, Z contains the updating vector (the last row of */
|
|
/* the first sub-eigenvector matrix and the first row of the */
|
|
/* second sub-eigenvector matrix). */
|
|
/* On exit, the contents of Z are destroyed by the updating */
|
|
/* process. */
|
|
|
|
/* DLAMDA (output) REAL array, dimension (N) */
|
|
/* A copy of the first K eigenvalues which will be used by */
|
|
/* SLAED3 to form the secular equation. */
|
|
|
|
/* Q2 (output) REAL array, dimension (LDQ2,N) */
|
|
/* If ICOMPQ = 0, Q2 is not referenced. Otherwise, */
|
|
/* a copy of the first K eigenvectors which will be used by */
|
|
/* SLAED7 in a matrix multiply (SGEMM) to update the new */
|
|
/* eigenvectors. */
|
|
|
|
/* LDQ2 (input) INTEGER */
|
|
/* The leading dimension of the array Q2. LDQ2 >= max(1,N). */
|
|
|
|
/* W (output) REAL array, dimension (N) */
|
|
/* The first k values of the final deflation-altered z-vector and */
|
|
/* will be passed to SLAED3. */
|
|
|
|
/* PERM (output) INTEGER array, dimension (N) */
|
|
/* The permutations (from deflation and sorting) to be applied */
|
|
/* to each eigenblock. */
|
|
|
|
/* GIVPTR (output) INTEGER */
|
|
/* The number of Givens rotations which took place in this */
|
|
/* subproblem. */
|
|
|
|
/* GIVCOL (output) INTEGER array, dimension (2, N) */
|
|
/* Each pair of numbers indicates a pair of columns to take place */
|
|
/* in a Givens rotation. */
|
|
|
|
/* GIVNUM (output) REAL array, dimension (2, N) */
|
|
/* Each number indicates the S value to be used in the */
|
|
/* corresponding Givens rotation. */
|
|
|
|
/* INDXP (workspace) INTEGER array, dimension (N) */
|
|
/* The permutation used to place deflated values of D at the end */
|
|
/* of the array. INDXP(1:K) points to the nondeflated D-values */
|
|
/* and INDXP(K+1:N) points to the deflated eigenvalues. */
|
|
|
|
/* INDX (workspace) INTEGER array, dimension (N) */
|
|
/* The permutation used to sort the contents of D into ascending */
|
|
/* order. */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* Based on contributions by */
|
|
/* Jeff Rutter, Computer Science Division, University of California */
|
|
/* at Berkeley, USA */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--d__;
|
|
q_dim1 = *ldq;
|
|
q_offset = 1 + q_dim1;
|
|
q -= q_offset;
|
|
--indxq;
|
|
--z__;
|
|
--dlamda;
|
|
q2_dim1 = *ldq2;
|
|
q2_offset = 1 + q2_dim1;
|
|
q2 -= q2_offset;
|
|
--w;
|
|
--perm;
|
|
givcol -= 3;
|
|
givnum -= 3;
|
|
--indxp;
|
|
--indx;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
|
|
if (*icompq < 0 || *icompq > 1) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
} else if (*icompq == 1 && *qsiz < *n) {
|
|
*info = -4;
|
|
} else if (*ldq < max(1,*n)) {
|
|
*info = -7;
|
|
} else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
|
|
*info = -10;
|
|
} else if (*ldq2 < max(1,*n)) {
|
|
*info = -14;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SLAED8", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
n1 = *cutpnt;
|
|
n2 = *n - n1;
|
|
n1p1 = n1 + 1;
|
|
|
|
if (*rho < 0.f) {
|
|
sscal_(&n2, &c_b3, &z__[n1p1], &c__1);
|
|
}
|
|
|
|
/* Normalize z so that norm(z) = 1 */
|
|
|
|
t = 1.f / sqrt(2.f);
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
indx[j] = j;
|
|
/* L10: */
|
|
}
|
|
sscal_(n, &t, &z__[1], &c__1);
|
|
*rho = (r__1 = *rho * 2.f, dabs(r__1));
|
|
|
|
/* Sort the eigenvalues into increasing order */
|
|
|
|
i__1 = *n;
|
|
for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
|
|
indxq[i__] += *cutpnt;
|
|
/* L20: */
|
|
}
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
dlamda[i__] = d__[indxq[i__]];
|
|
w[i__] = z__[indxq[i__]];
|
|
/* L30: */
|
|
}
|
|
i__ = 1;
|
|
j = *cutpnt + 1;
|
|
slamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
d__[i__] = dlamda[indx[i__]];
|
|
z__[i__] = w[indx[i__]];
|
|
/* L40: */
|
|
}
|
|
|
|
/* Calculate the allowable deflation tolerence */
|
|
|
|
imax = isamax_(n, &z__[1], &c__1);
|
|
jmax = isamax_(n, &d__[1], &c__1);
|
|
eps = slamch_("Epsilon");
|
|
tol = eps * 8.f * (r__1 = d__[jmax], dabs(r__1));
|
|
|
|
/* If the rank-1 modifier is small enough, no more needs to be done */
|
|
/* except to reorganize Q so that its columns correspond with the */
|
|
/* elements in D. */
|
|
|
|
if (*rho * (r__1 = z__[imax], dabs(r__1)) <= tol) {
|
|
*k = 0;
|
|
if (*icompq == 0) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
perm[j] = indxq[indx[j]];
|
|
/* L50: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
perm[j] = indxq[indx[j]];
|
|
scopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1
|
|
+ 1], &c__1);
|
|
/* L60: */
|
|
}
|
|
slacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* If there are multiple eigenvalues then the problem deflates. Here */
|
|
/* the number of equal eigenvalues are found. As each equal */
|
|
/* eigenvalue is found, an elementary reflector is computed to rotate */
|
|
/* the corresponding eigensubspace so that the corresponding */
|
|
/* components of Z are zero in this new basis. */
|
|
|
|
*k = 0;
|
|
*givptr = 0;
|
|
k2 = *n + 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
indxp[k2] = j;
|
|
if (j == *n) {
|
|
goto L110;
|
|
}
|
|
} else {
|
|
jlam = j;
|
|
goto L80;
|
|
}
|
|
/* L70: */
|
|
}
|
|
L80:
|
|
++j;
|
|
if (j > *n) {
|
|
goto L100;
|
|
}
|
|
if (*rho * (r__1 = z__[j], dabs(r__1)) <= tol) {
|
|
|
|
/* Deflate due to small z component. */
|
|
|
|
--k2;
|
|
indxp[k2] = j;
|
|
} else {
|
|
|
|
/* Check if eigenvalues are close enough to allow deflation. */
|
|
|
|
s = z__[jlam];
|
|
c__ = z__[j];
|
|
|
|
/* Find sqrt(a**2+b**2) without overflow or */
|
|
/* destructive underflow. */
|
|
|
|
tau = slapy2_(&c__, &s);
|
|
t = d__[j] - d__[jlam];
|
|
c__ /= tau;
|
|
s = -s / tau;
|
|
if ((r__1 = t * c__ * s, dabs(r__1)) <= tol) {
|
|
|
|
/* Deflation is possible. */
|
|
|
|
z__[j] = tau;
|
|
z__[jlam] = 0.f;
|
|
|
|
/* Record the appropriate Givens rotation */
|
|
|
|
++(*givptr);
|
|
givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];
|
|
givcol[(*givptr << 1) + 2] = indxq[indx[j]];
|
|
givnum[(*givptr << 1) + 1] = c__;
|
|
givnum[(*givptr << 1) + 2] = s;
|
|
if (*icompq == 1) {
|
|
srot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
|
|
indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
|
|
}
|
|
t = d__[jlam] * c__ * c__ + d__[j] * s * s;
|
|
d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
|
|
d__[jlam] = t;
|
|
--k2;
|
|
i__ = 1;
|
|
L90:
|
|
if (k2 + i__ <= *n) {
|
|
if (d__[jlam] < d__[indxp[k2 + i__]]) {
|
|
indxp[k2 + i__ - 1] = indxp[k2 + i__];
|
|
indxp[k2 + i__] = jlam;
|
|
++i__;
|
|
goto L90;
|
|
} else {
|
|
indxp[k2 + i__ - 1] = jlam;
|
|
}
|
|
} else {
|
|
indxp[k2 + i__ - 1] = jlam;
|
|
}
|
|
jlam = j;
|
|
} else {
|
|
++(*k);
|
|
w[*k] = z__[jlam];
|
|
dlamda[*k] = d__[jlam];
|
|
indxp[*k] = jlam;
|
|
jlam = j;
|
|
}
|
|
}
|
|
goto L80;
|
|
L100:
|
|
|
|
/* Record the last eigenvalue. */
|
|
|
|
++(*k);
|
|
w[*k] = z__[jlam];
|
|
dlamda[*k] = d__[jlam];
|
|
indxp[*k] = jlam;
|
|
|
|
L110:
|
|
|
|
/* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
|
|
/* and Q2 respectively. The eigenvalues/vectors which were not */
|
|
/* deflated go into the first K slots of DLAMDA and Q2 respectively, */
|
|
/* while those which were deflated go into the last N - K slots. */
|
|
|
|
if (*icompq == 0) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
jp = indxp[j];
|
|
dlamda[j] = d__[jp];
|
|
perm[j] = indxq[indx[jp]];
|
|
/* L120: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
jp = indxp[j];
|
|
dlamda[j] = d__[jp];
|
|
perm[j] = indxq[indx[jp]];
|
|
scopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
|
|
, &c__1);
|
|
/* L130: */
|
|
}
|
|
}
|
|
|
|
/* The deflated eigenvalues and their corresponding vectors go back */
|
|
/* into the last N - K slots of D and Q respectively. */
|
|
|
|
if (*k < *n) {
|
|
if (*icompq == 0) {
|
|
i__1 = *n - *k;
|
|
scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
|
|
} else {
|
|
i__1 = *n - *k;
|
|
scopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
|
|
i__1 = *n - *k;
|
|
slacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
|
|
k + 1) * q_dim1 + 1], ldq);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of SLAED8 */
|
|
|
|
} /* slaed8_ */
|