545 lines
19 KiB
C++
545 lines
19 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <float.h>
|
|
|
|
// to make sure we can use these short names
|
|
#undef K
|
|
#undef L
|
|
#undef T
|
|
|
|
// This is based on the "An Improved Adaptive Background Mixture Model for
|
|
// Real-time Tracking with Shadow Detection" by P. KaewTraKulPong and R. Bowden
|
|
// http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
|
|
//
|
|
// The windowing method is used, but not the shadow detection. I make some of my
|
|
// own modifications which make more sense. There are some errors in some of their
|
|
// equations.
|
|
//
|
|
|
|
namespace cv
|
|
{
|
|
|
|
BackgroundSubtractor::~BackgroundSubtractor() {}
|
|
void BackgroundSubtractor::operator()(const Mat&, Mat&, double)
|
|
{
|
|
}
|
|
|
|
static const int defaultNMixtures = CV_BGFG_MOG_NGAUSSIANS;
|
|
static const int defaultHistory = CV_BGFG_MOG_WINDOW_SIZE;
|
|
static const double defaultBackgroundRatio = CV_BGFG_MOG_BACKGROUND_THRESHOLD;
|
|
static const double defaultVarThreshold = CV_BGFG_MOG_STD_THRESHOLD*CV_BGFG_MOG_STD_THRESHOLD;
|
|
static const double defaultNoiseSigma = CV_BGFG_MOG_SIGMA_INIT*0.5;
|
|
|
|
BackgroundSubtractorMOG::BackgroundSubtractorMOG()
|
|
{
|
|
frameSize = Size(0,0);
|
|
frameType = 0;
|
|
|
|
nframes = 0;
|
|
nmixtures = defaultNMixtures;
|
|
history = defaultHistory;
|
|
varThreshold = defaultVarThreshold;
|
|
backgroundRatio = defaultBackgroundRatio;
|
|
noiseSigma = defaultNoiseSigma;
|
|
}
|
|
|
|
BackgroundSubtractorMOG::BackgroundSubtractorMOG(int _history, int _nmixtures,
|
|
double _backgroundRatio,
|
|
double _noiseSigma)
|
|
{
|
|
frameSize = Size(0,0);
|
|
frameType = 0;
|
|
|
|
nframes = 0;
|
|
nmixtures = min(_nmixtures > 0 ? _nmixtures : defaultNMixtures, 8);
|
|
history = _history > 0 ? _history : defaultHistory;
|
|
varThreshold = defaultVarThreshold;
|
|
backgroundRatio = min(_backgroundRatio > 0 ? _backgroundRatio : 0.95, 1.);
|
|
noiseSigma = _noiseSigma <= 0 ? defaultNoiseSigma : _noiseSigma;
|
|
}
|
|
|
|
BackgroundSubtractorMOG::~BackgroundSubtractorMOG()
|
|
{
|
|
}
|
|
|
|
|
|
void BackgroundSubtractorMOG::initialize(Size _frameSize, int _frameType)
|
|
{
|
|
frameSize = _frameSize;
|
|
frameType = _frameType;
|
|
nframes = 0;
|
|
|
|
int nchannels = CV_MAT_CN(frameType);
|
|
CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U );
|
|
|
|
// for each gaussian mixture of each pixel bg model we store ...
|
|
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
|
|
// the mean (nchannels values) and
|
|
// the diagonal covariance matrix (another nchannels values)
|
|
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + 2*nchannels), CV_32F );
|
|
bgmodel = Scalar::all(0);
|
|
}
|
|
|
|
|
|
template<typename VT> struct MixData
|
|
{
|
|
float sortKey;
|
|
float weight;
|
|
VT mean;
|
|
VT var;
|
|
};
|
|
|
|
|
|
static void process8uC1( BackgroundSubtractorMOG& obj, const Mat& image, Mat& fgmask, double learningRate )
|
|
{
|
|
int x, y, k, k1, rows = image.rows, cols = image.cols;
|
|
float alpha = (float)learningRate, T = (float)obj.backgroundRatio, vT = (float)obj.varThreshold;
|
|
int K = obj.nmixtures;
|
|
MixData<float>* mptr = (MixData<float>*)obj.bgmodel.data;
|
|
|
|
const float w0 = (float)CV_BGFG_MOG_WEIGHT_INIT;
|
|
const float sk0 = (float)(w0/CV_BGFG_MOG_SIGMA_INIT);
|
|
const float var0 = (float)(CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT);
|
|
const float minVar = (float)(obj.noiseSigma*obj.noiseSigma);
|
|
|
|
for( y = 0; y < rows; y++ )
|
|
{
|
|
const uchar* src = image.ptr<uchar>(y);
|
|
uchar* dst = fgmask.ptr<uchar>(y);
|
|
|
|
if( alpha > 0 )
|
|
{
|
|
for( x = 0; x < cols; x++, mptr += K )
|
|
{
|
|
float wsum = 0;
|
|
float pix = src[x];
|
|
int kHit = -1, kForeground = -1;
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
float w = mptr[k].weight;
|
|
wsum += w;
|
|
if( w < FLT_EPSILON )
|
|
break;
|
|
float mu = mptr[k].mean;
|
|
float var = mptr[k].var;
|
|
float diff = pix - mu;
|
|
float d2 = diff*diff;
|
|
if( d2 < vT*var )
|
|
{
|
|
wsum -= w;
|
|
float dw = alpha*(1.f - w);
|
|
mptr[k].weight = w + dw;
|
|
mptr[k].mean = mu + alpha*diff;
|
|
var = max(var + alpha*(d2 - var), minVar);
|
|
mptr[k].var = var;
|
|
mptr[k].sortKey = w/sqrt(var);
|
|
|
|
for( k1 = k-1; k1 >= 0; k1-- )
|
|
{
|
|
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
|
|
break;
|
|
std::swap( mptr[k1], mptr[k1+1] );
|
|
}
|
|
|
|
kHit = k1+1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
|
|
{
|
|
kHit = k = min(k, K-1);
|
|
wsum += w0 - mptr[k].weight;
|
|
mptr[k].weight = w0;
|
|
mptr[k].mean = pix;
|
|
mptr[k].var = var0;
|
|
mptr[k].sortKey = sk0;
|
|
}
|
|
else
|
|
for( ; k < K; k++ )
|
|
wsum += mptr[k].weight;
|
|
|
|
float wscale = 1.f/wsum;
|
|
wsum = 0;
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
wsum += mptr[k].weight *= wscale;
|
|
mptr[k].sortKey *= wscale;
|
|
if( wsum > T && kForeground < 0 )
|
|
kForeground = k+1;
|
|
}
|
|
|
|
dst[x] = (uchar)(-(kHit >= kForeground));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( x = 0; x < cols; x++, mptr += K )
|
|
{
|
|
float pix = src[x];
|
|
int kHit = -1, kForeground = -1;
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
if( mptr[k].weight < FLT_EPSILON )
|
|
break;
|
|
float mu = mptr[k].mean;
|
|
float var = mptr[k].var;
|
|
float diff = pix - mu;
|
|
float d2 = diff*diff;
|
|
if( d2 < vT*var )
|
|
{
|
|
kHit = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( kHit >= 0 )
|
|
{
|
|
float wsum = 0;
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
wsum += mptr[k].weight;
|
|
if( wsum > T )
|
|
{
|
|
kForeground = k+1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process8uC3( BackgroundSubtractorMOG& obj, const Mat& image, Mat& fgmask, double learningRate )
|
|
{
|
|
int x, y, k, k1, rows = image.rows, cols = image.cols;
|
|
float alpha = (float)learningRate, T = (float)obj.backgroundRatio, vT = (float)obj.varThreshold;
|
|
int K = obj.nmixtures;
|
|
|
|
const float w0 = (float)CV_BGFG_MOG_WEIGHT_INIT;
|
|
const float sk0 = (float)(w0/CV_BGFG_MOG_SIGMA_INIT*sqrt(3.));
|
|
const float var0 = (float)(CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT);
|
|
const float minVar = (float)(obj.noiseSigma*obj.noiseSigma);
|
|
MixData<Vec3f>* mptr = (MixData<Vec3f>*)obj.bgmodel.data;
|
|
|
|
for( y = 0; y < rows; y++ )
|
|
{
|
|
const uchar* src = image.ptr<uchar>(y);
|
|
uchar* dst = fgmask.ptr<uchar>(y);
|
|
|
|
if( alpha > 0 )
|
|
{
|
|
for( x = 0; x < cols; x++, mptr += K )
|
|
{
|
|
float wsum = 0;
|
|
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
|
|
int kHit = -1, kForeground = -1;
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
float w = mptr[k].weight;
|
|
wsum += w;
|
|
if( w < FLT_EPSILON )
|
|
break;
|
|
Vec3f mu = mptr[k].mean;
|
|
Vec3f var = mptr[k].var;
|
|
Vec3f diff = pix - mu;
|
|
float d2 = diff.dot(diff);
|
|
if( d2 < vT*(var[0] + var[1] + var[2]) )
|
|
{
|
|
wsum -= w;
|
|
float dw = alpha*(1.f - w);
|
|
mptr[k].weight = w + dw;
|
|
mptr[k].mean = mu + alpha*diff;
|
|
var = Vec3f(max(var[0] + alpha*(diff[0]*diff[0] - var[0]), minVar),
|
|
max(var[1] + alpha*(diff[1]*diff[1] - var[1]), minVar),
|
|
max(var[2] + alpha*(diff[2]*diff[2] - var[2]), minVar));
|
|
mptr[k].var = var;
|
|
mptr[k].sortKey = w/sqrt(var[0] + var[1] + var[2]);
|
|
|
|
for( k1 = k-1; k1 >= 0; k1-- )
|
|
{
|
|
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
|
|
break;
|
|
std::swap( mptr[k1], mptr[k1+1] );
|
|
}
|
|
|
|
kHit = k1+1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
|
|
{
|
|
kHit = k = min(k, K-1);
|
|
wsum += w0 - mptr[k].weight;
|
|
mptr[k].weight = w0;
|
|
mptr[k].mean = pix;
|
|
mptr[k].var = Vec3f(var0, var0, var0);
|
|
mptr[k].sortKey = sk0;
|
|
}
|
|
else
|
|
for( ; k < K; k++ )
|
|
wsum += mptr[k].weight;
|
|
|
|
float wscale = 1.f/wsum;
|
|
wsum = 0;
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
wsum += mptr[k].weight *= wscale;
|
|
mptr[k].sortKey *= wscale;
|
|
if( wsum > T && kForeground < 0 )
|
|
kForeground = k+1;
|
|
}
|
|
|
|
dst[x] = (uchar)(-(kHit >= kForeground));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( x = 0; x < cols; x++, mptr += K )
|
|
{
|
|
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
|
|
int kHit = -1, kForeground = -1;
|
|
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
if( mptr[k].weight < FLT_EPSILON )
|
|
break;
|
|
Vec3f mu = mptr[k].mean;
|
|
Vec3f var = mptr[k].var;
|
|
Vec3f diff = pix - mu;
|
|
float d2 = diff.dot(diff);
|
|
if( d2 < vT*(var[0] + var[1] + var[2]) )
|
|
{
|
|
kHit = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( kHit >= 0 )
|
|
{
|
|
float wsum = 0;
|
|
for( k = 0; k < K; k++ )
|
|
{
|
|
wsum += mptr[k].weight;
|
|
if( wsum > T )
|
|
{
|
|
kForeground = k+1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BackgroundSubtractorMOG::operator()(const Mat& image, Mat& fgmask, double learningRate)
|
|
{
|
|
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
|
|
|
|
if( needToInitialize )
|
|
initialize(image.size(), image.type());
|
|
|
|
CV_Assert( image.depth() == CV_8U );
|
|
fgmask.create( image.size(), CV_8U );
|
|
|
|
++nframes;
|
|
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./min( nframes, history );
|
|
CV_Assert(learningRate >= 0);
|
|
|
|
if( image.type() == CV_8UC1 )
|
|
process8uC1( *this, image, fgmask, learningRate );
|
|
else if( image.type() == CV_8UC3 )
|
|
process8uC3( *this, image, fgmask, learningRate );
|
|
else
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in BackgroundSubtractorMOG" );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static void CV_CDECL
|
|
icvReleaseGaussianBGModel( CvGaussBGModel** bg_model )
|
|
{
|
|
if( !bg_model )
|
|
CV_Error( CV_StsNullPtr, "" );
|
|
|
|
if( *bg_model )
|
|
{
|
|
delete (cv::Mat*)((*bg_model)->g_point);
|
|
cvReleaseImage( &(*bg_model)->background );
|
|
cvReleaseImage( &(*bg_model)->foreground );
|
|
cvReleaseMemStorage(&(*bg_model)->storage);
|
|
memset( *bg_model, 0, sizeof(**bg_model) );
|
|
delete *bg_model;
|
|
*bg_model = 0;
|
|
}
|
|
}
|
|
|
|
|
|
static int CV_CDECL
|
|
icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel* bg_model, double learningRate )
|
|
{
|
|
int region_count = 0;
|
|
|
|
cv::Mat image = cv::cvarrToMat(curr_frame), mask = cv::cvarrToMat(bg_model->foreground);
|
|
|
|
cv::BackgroundSubtractorMOG mog;
|
|
mog.bgmodel = *(cv::Mat*)bg_model->g_point;
|
|
mog.frameSize = mog.bgmodel.data ? cv::Size(cvGetSize(curr_frame)) : cv::Size();
|
|
mog.frameType = image.type();
|
|
|
|
mog.nframes = bg_model->countFrames;
|
|
mog.history = bg_model->params.win_size;
|
|
mog.nmixtures = bg_model->params.n_gauss;
|
|
mog.varThreshold = bg_model->params.std_threshold;
|
|
mog.backgroundRatio = bg_model->params.bg_threshold;
|
|
|
|
mog(image, mask, learningRate);
|
|
|
|
bg_model->countFrames = mog.nframes;
|
|
if( ((cv::Mat*)bg_model->g_point)->data != mog.bgmodel.data )
|
|
*((cv::Mat*)bg_model->g_point) = mog.bgmodel;
|
|
|
|
//foreground filtering
|
|
|
|
//filter small regions
|
|
cvClearMemStorage(bg_model->storage);
|
|
|
|
//cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
|
|
//cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );
|
|
|
|
/*
|
|
CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
|
|
cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
|
|
for( seq = first_seq; seq; seq = seq->h_next )
|
|
{
|
|
CvContour* cnt = (CvContour*)seq;
|
|
if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
|
|
{
|
|
//delete small contour
|
|
prev_seq = seq->h_prev;
|
|
if( prev_seq )
|
|
{
|
|
prev_seq->h_next = seq->h_next;
|
|
if( seq->h_next ) seq->h_next->h_prev = prev_seq;
|
|
}
|
|
else
|
|
{
|
|
first_seq = seq->h_next;
|
|
if( seq->h_next ) seq->h_next->h_prev = NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
region_count++;
|
|
}
|
|
}
|
|
bg_model->foreground_regions = first_seq;
|
|
cvZero(bg_model->foreground);
|
|
cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);*/
|
|
CvMat _mask = mask;
|
|
cvCopy(&_mask, bg_model->foreground);
|
|
|
|
return region_count;
|
|
}
|
|
|
|
CV_IMPL CvBGStatModel*
|
|
cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
|
|
{
|
|
CvGaussBGStatModelParams params;
|
|
|
|
CV_Assert( CV_IS_IMAGE(first_frame) );
|
|
|
|
//init parameters
|
|
if( parameters == NULL )
|
|
{ /* These constants are defined in cvaux/include/cvaux.h: */
|
|
params.win_size = CV_BGFG_MOG_WINDOW_SIZE;
|
|
params.bg_threshold = CV_BGFG_MOG_BACKGROUND_THRESHOLD;
|
|
|
|
params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;
|
|
params.weight_init = CV_BGFG_MOG_WEIGHT_INIT;
|
|
|
|
params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;
|
|
params.minArea = CV_BGFG_MOG_MINAREA;
|
|
params.n_gauss = CV_BGFG_MOG_NGAUSSIANS;
|
|
}
|
|
else
|
|
params = *parameters;
|
|
|
|
CvGaussBGModel* bg_model = new CvGaussBGModel;
|
|
memset( bg_model, 0, sizeof(*bg_model) );
|
|
bg_model->type = CV_BG_MODEL_MOG;
|
|
bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
|
|
bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
|
|
|
|
bg_model->params = params;
|
|
|
|
//prepare storages
|
|
bg_model->g_point = (CvGaussBGPoint*)new cv::Mat();
|
|
|
|
bg_model->background = cvCreateImage(cvSize(first_frame->width,
|
|
first_frame->height), IPL_DEPTH_8U, first_frame->nChannels);
|
|
bg_model->foreground = cvCreateImage(cvSize(first_frame->width,
|
|
first_frame->height), IPL_DEPTH_8U, 1);
|
|
|
|
bg_model->storage = cvCreateMemStorage();
|
|
|
|
bg_model->countFrames = 0;
|
|
|
|
icvUpdateGaussianBGModel( first_frame, bg_model, 1 );
|
|
|
|
return (CvBGStatModel*)bg_model;
|
|
}
|
|
|
|
/* End of file. */
|
|
|