opencv/modules/ocl/src/knearest.cpp
Roman Donchenko 78be4f66f7 Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	CMakeLists.txt
	modules/calib3d/src/calibration.cpp
	modules/ocl/src/cl_programcache.cpp
	modules/ocl/src/filtering.cpp
	modules/ocl/src/imgproc.cpp
	samples/ocl/adaptive_bilateral_filter.cpp
	samples/ocl/bgfg_segm.cpp
	samples/ocl/clahe.cpp
	samples/ocl/facedetect.cpp
	samples/ocl/pyrlk_optical_flow.cpp
	samples/ocl/squares.cpp
	samples/ocl/surf_matcher.cpp
	samples/ocl/tvl1_optical_flow.cpp
2013-10-28 13:38:25 +04:00

151 lines
5.7 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
KNearestNeighbour::KNearestNeighbour()
{
clear();
}
KNearestNeighbour::~KNearestNeighbour()
{
clear();
samples_ocl.release();
}
void KNearestNeighbour::clear()
{
CvKNearest::clear();
}
bool KNearestNeighbour::train(const Mat& trainData, Mat& labels, Mat& sampleIdx,
bool isRegression, int _max_k, bool updateBase)
{
max_k = _max_k;
bool cv_knn_train = CvKNearest::train(trainData, labels, sampleIdx, isRegression, max_k, updateBase);
CvVectors* s = CvKNearest::samples;
cv::Mat samples_mat(s->count, CvKNearest::var_count + 1, s->type);
float* s1 = (float*)(s + 1);
for(int i = 0; i < s->count; i++)
{
float* t1 = s->data.fl[i];
for(int j = 0; j < CvKNearest::var_count; j++)
{
Point pos(j, i);
samples_mat.at<float>(pos) = t1[j];
}
Point pos_label(CvKNearest::var_count, i);
samples_mat.at<float>(pos_label) = s1[i];
}
samples_ocl = samples_mat;
return cv_knn_train;
}
void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lables)
{
CV_Assert(!samples_ocl.empty());
lables.create(samples.rows, 1, CV_32FC1);
CV_Assert(samples.cols == CvKNearest::var_count);
CV_Assert(samples.type() == CV_32FC1);
CV_Assert(k >= 1 && k <= max_k);
int k1 = KNearest::get_sample_count();
k1 = MIN( k1, k );
String kernel_name = "knn_find_nearest";
cl_ulong local_memory_size = (cl_ulong)Context::getContext()->getDeviceInfo().localMemorySize;
int nThreads = local_memory_size / (2 * k * 4);
if(nThreads >= 256)
nThreads = 256;
int smem_size = nThreads * k * 4 * 2;
size_t local_thread[] = {1, nThreads, 1};
size_t global_thread[] = {1, samples.rows, 1};
char build_option[50];
if(!Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE))
{
sprintf(build_option, " ");
}else
sprintf(build_option, "-D DOUBLE_SUPPORT");
std::vector< std::pair<size_t, const void*> > args;
int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize();
int samples_step = samples.step/samples.elemSize();
int lables_step = lables.step/lables.elemSize();
int _regression = 0;
if(CvKNearest::regression)
_regression = 1;
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&samples.data));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_step));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&k));
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&samples_ocl.data));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_ocl.rows));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_ocl_step));
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&lables.data));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&lables_step));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&_regression));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&k1));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_ocl.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void*)&nThreads));
args.push_back(std::make_pair(smem_size, (void*)NULL));
openCLExecuteKernel(Context::getContext(), &knearest, kernel_name, global_thread, local_thread, args, -1, -1, build_option);
}