
Conflicts: CMakeLists.txt modules/calib3d/src/calibration.cpp modules/ocl/src/cl_programcache.cpp modules/ocl/src/filtering.cpp modules/ocl/src/imgproc.cpp samples/ocl/adaptive_bilateral_filter.cpp samples/ocl/bgfg_segm.cpp samples/ocl/clahe.cpp samples/ocl/facedetect.cpp samples/ocl/pyrlk_optical_flow.cpp samples/ocl/squares.cpp samples/ocl/surf_matcher.cpp samples/ocl/tvl1_optical_flow.cpp
151 lines
5.7 KiB
C++
151 lines
5.7 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
|
|
KNearestNeighbour::KNearestNeighbour()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
KNearestNeighbour::~KNearestNeighbour()
|
|
{
|
|
clear();
|
|
samples_ocl.release();
|
|
}
|
|
|
|
void KNearestNeighbour::clear()
|
|
{
|
|
CvKNearest::clear();
|
|
}
|
|
|
|
bool KNearestNeighbour::train(const Mat& trainData, Mat& labels, Mat& sampleIdx,
|
|
bool isRegression, int _max_k, bool updateBase)
|
|
{
|
|
max_k = _max_k;
|
|
bool cv_knn_train = CvKNearest::train(trainData, labels, sampleIdx, isRegression, max_k, updateBase);
|
|
|
|
CvVectors* s = CvKNearest::samples;
|
|
|
|
cv::Mat samples_mat(s->count, CvKNearest::var_count + 1, s->type);
|
|
|
|
float* s1 = (float*)(s + 1);
|
|
for(int i = 0; i < s->count; i++)
|
|
{
|
|
float* t1 = s->data.fl[i];
|
|
for(int j = 0; j < CvKNearest::var_count; j++)
|
|
{
|
|
Point pos(j, i);
|
|
samples_mat.at<float>(pos) = t1[j];
|
|
}
|
|
|
|
Point pos_label(CvKNearest::var_count, i);
|
|
samples_mat.at<float>(pos_label) = s1[i];
|
|
}
|
|
|
|
samples_ocl = samples_mat;
|
|
return cv_knn_train;
|
|
}
|
|
|
|
void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lables)
|
|
{
|
|
CV_Assert(!samples_ocl.empty());
|
|
lables.create(samples.rows, 1, CV_32FC1);
|
|
|
|
CV_Assert(samples.cols == CvKNearest::var_count);
|
|
CV_Assert(samples.type() == CV_32FC1);
|
|
CV_Assert(k >= 1 && k <= max_k);
|
|
|
|
int k1 = KNearest::get_sample_count();
|
|
k1 = MIN( k1, k );
|
|
|
|
String kernel_name = "knn_find_nearest";
|
|
cl_ulong local_memory_size = (cl_ulong)Context::getContext()->getDeviceInfo().localMemorySize;
|
|
int nThreads = local_memory_size / (2 * k * 4);
|
|
if(nThreads >= 256)
|
|
nThreads = 256;
|
|
|
|
int smem_size = nThreads * k * 4 * 2;
|
|
size_t local_thread[] = {1, nThreads, 1};
|
|
size_t global_thread[] = {1, samples.rows, 1};
|
|
|
|
char build_option[50];
|
|
if(!Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE))
|
|
{
|
|
sprintf(build_option, " ");
|
|
}else
|
|
sprintf(build_option, "-D DOUBLE_SUPPORT");
|
|
|
|
std::vector< std::pair<size_t, const void*> > args;
|
|
|
|
int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize();
|
|
int samples_step = samples.step/samples.elemSize();
|
|
int lables_step = lables.step/lables.elemSize();
|
|
|
|
int _regression = 0;
|
|
if(CvKNearest::regression)
|
|
_regression = 1;
|
|
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&samples.data));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples.rows));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples.cols));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_step));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&k));
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&samples_ocl.data));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_ocl.rows));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_ocl_step));
|
|
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&lables.data));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&lables_step));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&_regression));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&k1));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&samples_ocl.cols));
|
|
args.push_back(std::make_pair(sizeof(cl_int), (void*)&nThreads));
|
|
args.push_back(std::make_pair(smem_size, (void*)NULL));
|
|
openCLExecuteKernel(Context::getContext(), &knearest, kernel_name, global_thread, local_thread, args, -1, -1, build_option);
|
|
} |