312 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #include <string>
 | |
| 
 | |
| #ifdef HAVE_CVCONFIG_H
 | |
| #include "cvconfig.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_TBB
 | |
| #include "tbb/task_scheduler_init.h"
 | |
| #endif
 | |
| 
 | |
| using namespace cv;
 | |
| 
 | |
| const int num_detections = 3;
 | |
| const float true_scores[3] = {-0.383931f, -0.825876f, -0.959934f};
 | |
| const float score_thr = 0.05f;
 | |
| const CvRect true_bounding_boxes[3] = {cvRect(0, 45, 362, 452), cvRect(304, 0, 64, 80), cvRect(236, 0, 108, 59)};
 | |
| 
 | |
| class CV_LatentSVMDetectorTest : public cvtest::BaseTest
 | |
| {
 | |
| protected:
 | |
|     void run(int);
 | |
|     bool isEqual(CvRect r1, CvRect r2, int eps);
 | |
| };
 | |
| 
 | |
| bool CV_LatentSVMDetectorTest::isEqual(CvRect r1, CvRect r2, int eps)
 | |
| {
 | |
|     return (std::abs(r1.x - r2.x) <= eps
 | |
|             && std::abs(r1.y - r2.y) <= eps
 | |
|             && std::abs(r1.width - r2.width) <= eps
 | |
|             && std::abs(r1.height - r2.height) <= eps);
 | |
| }
 | |
| 
 | |
| void CV_LatentSVMDetectorTest::run( int /* start_from */)
 | |
| {
 | |
|     string img_path = string(ts->get_data_path()) + "latentsvmdetector/cat.png";
 | |
|     string model_path = string(ts->get_data_path()) + "latentsvmdetector/models_VOC2007/cat.xml";
 | |
|     int numThreads = -1;
 | |
| 
 | |
| #ifdef HAVE_TBB
 | |
|     numThreads = 2;
 | |
|     tbb::task_scheduler_init init(tbb::task_scheduler_init::deferred);
 | |
|     init.initialize(numThreads);
 | |
| #endif
 | |
| 
 | |
|     IplImage* image = cvLoadImage(img_path.c_str());
 | |
|     if (!image)
 | |
|     {
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     CvLatentSvmDetector* detector = cvLoadLatentSvmDetector(model_path.c_str());
 | |
|     if (!detector)
 | |
|     {
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         cvReleaseImage(&image);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     CvMemStorage* storage = cvCreateMemStorage(0);
 | |
|     CvSeq* detections = 0;
 | |
|     detections = cvLatentSvmDetectObjects(image, detector, storage, 0.5f, numThreads);
 | |
|     if (detections->total != num_detections)
 | |
|     {
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         ts->set_failed_test_info(cvtest::TS::OK);
 | |
|         for (int i = 0; i < detections->total; i++)
 | |
|         {
 | |
|             CvObjectDetection detection = *(CvObjectDetection*)cvGetSeqElem( detections, i );
 | |
|             CvRect bounding_box = detection.rect;
 | |
|             float score = detection.score;
 | |
|             if ((!isEqual(bounding_box, true_bounding_boxes[i], 1)) || (fabs(score - true_scores[i]) > score_thr))
 | |
|             {
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #ifdef HAVE_TBB
 | |
|     init.terminate();
 | |
| #endif
 | |
|     cvReleaseMemStorage( &storage );
 | |
|     cvReleaseLatentSvmDetector( &detector );
 | |
|     cvReleaseImage( &image );
 | |
| }
 | |
| 
 | |
| // Test for c++ version of Latent SVM
 | |
| 
 | |
| class LatentSVMDetectorTest : public cvtest::BaseTest
 | |
| {
 | |
| protected:
 | |
|     void run(int);
 | |
| };
 | |
| 
 | |
| static void writeDetections( FileStorage& fs, const string& nodeName, const vector<LatentSvmDetector::ObjectDetection>& detections )
 | |
| {
 | |
|     fs << nodeName << "[";
 | |
|     for( size_t i = 0; i < detections.size(); i++ )
 | |
|     {
 | |
|         const LatentSvmDetector::ObjectDetection& d = detections[i];
 | |
|         fs << d.rect.x << d.rect.y << d.rect.width << d.rect.height
 | |
|            << d.score << d.classID;
 | |
|     }
 | |
|     fs << "]";
 | |
| }
 | |
| 
 | |
| static void readDetections( FileStorage fs, const string& nodeName, vector<LatentSvmDetector::ObjectDetection>& detections )
 | |
| {
 | |
|     detections.clear();
 | |
| 
 | |
|     FileNode fn = fs.root()[nodeName];
 | |
|     FileNodeIterator fni = fn.begin();
 | |
|     while( fni != fn.end() )
 | |
|     {
 | |
|         LatentSvmDetector::ObjectDetection d;
 | |
|         fni >> d.rect.x >> d.rect.y >> d.rect.width >> d.rect.height
 | |
|             >> d.score >> d.classID;
 | |
|         detections.push_back( d );
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline bool isEqual( const LatentSvmDetector::ObjectDetection& d1, const LatentSvmDetector::ObjectDetection& d2, int eps, float threshold)
 | |
| {
 | |
|     return (
 | |
|            std::abs(d1.rect.x - d2.rect.x) <= eps
 | |
|            && std::abs(d1.rect.y - d2.rect.y) <= eps
 | |
|            && std::abs(d1.rect.width - d2.rect.width) <= eps
 | |
|            && std::abs(d1.rect.height - d2.rect.height) <= eps
 | |
|            && (d1.classID == d2.classID)
 | |
|            && std::abs(d1.score - d2.score) <= threshold
 | |
|            );
 | |
| }
 | |
| 
 | |
| std::ostream& operator << (std::ostream& os, const CvRect& r)
 | |
| {
 | |
|     return (os << "[x=" << r.x << ", y=" << r.y << ", w=" << r.width << ", h=" << r.height << "]");
 | |
| }
 | |
| 
 | |
| bool compareResults( const vector<LatentSvmDetector::ObjectDetection>& calc, const vector<LatentSvmDetector::ObjectDetection>& valid, int eps, float threshold)
 | |
| {
 | |
|     if( calc.size() != valid.size() )
 | |
|         return false;
 | |
| 
 | |
|     for( size_t i = 0; i < calc.size(); i++ )
 | |
|     {
 | |
|         const LatentSvmDetector::ObjectDetection& c = calc[i];
 | |
|         const LatentSvmDetector::ObjectDetection& v = valid[i];
 | |
|         if( !isEqual(c, v, eps, threshold) )
 | |
|         {
 | |
|             std::cerr << "Expected: " << v.rect << " class=" << v.classID << " score=" << v.score << std::endl;
 | |
|             std::cerr << "Actual:   " << c.rect << " class=" << c.classID << " score=" << c.score << std::endl;
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void LatentSVMDetectorTest::run( int /* start_from */)
 | |
| {
 | |
|     string img_path_cat = string(ts->get_data_path()) + "latentsvmdetector/cat.png";
 | |
|     string img_path_cars = string(ts->get_data_path()) + "latentsvmdetector/cars.png";
 | |
| 
 | |
|     string model_path_cat = string(ts->get_data_path()) + "latentsvmdetector/models_VOC2007/cat.xml";
 | |
|     string model_path_car = string(ts->get_data_path()) + "latentsvmdetector/models_VOC2007/car.xml";
 | |
| 
 | |
|     string true_res_path = string(ts->get_data_path()) + "latentsvmdetector/results.xml";
 | |
| 
 | |
|     int numThreads = 1;
 | |
| 
 | |
| #ifdef HAVE_TBB
 | |
|     numThreads = 2;
 | |
| #endif
 | |
| 
 | |
|     Mat image_cat = imread( img_path_cat );
 | |
|     Mat image_cars = imread( img_path_cars );
 | |
|     if( image_cat.empty() || image_cars.empty() )
 | |
|     {
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // We will test 2 cases:
 | |
|     // detector1 - to test case of one class 'cat'
 | |
|     // detector12 - to test case of two (several) classes 'cat' and car
 | |
| 
 | |
|     // Load detectors
 | |
|     LatentSvmDetector detector1( vector<string>(1,model_path_cat) );
 | |
| 
 | |
|     vector<string> models_pathes(2);
 | |
|     models_pathes[0] = model_path_cat;
 | |
|     models_pathes[1] = model_path_car;
 | |
|     LatentSvmDetector detector12( models_pathes );
 | |
| 
 | |
|     if( detector1.empty() || detector12.empty() || detector12.getClassCount() != 2 )
 | |
|     {
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // 1. Test method detect
 | |
|     // Run detectors
 | |
|     vector<LatentSvmDetector::ObjectDetection> detections1_cat, detections12_cat, detections12_cars;
 | |
|     detector1.detect( image_cat, detections1_cat, 0.5, numThreads );
 | |
|     detector12.detect( image_cat, detections12_cat, 0.5, numThreads );
 | |
|     detector12.detect( image_cars, detections12_cars, 0.5, numThreads );
 | |
| 
 | |
|     // Load true results
 | |
|     FileStorage fs( true_res_path, FileStorage::READ );
 | |
|     if( fs.isOpened() )
 | |
|     {
 | |
|         vector<LatentSvmDetector::ObjectDetection> true_detections1_cat, true_detections12_cat, true_detections12_cars;
 | |
|         readDetections( fs, "detections1_cat", true_detections1_cat );
 | |
|         readDetections( fs, "detections12_cat", true_detections12_cat );
 | |
|         readDetections( fs, "detections12_cars", true_detections12_cars );
 | |
| 
 | |
| 
 | |
|         if( !compareResults(detections1_cat, true_detections1_cat, 1, score_thr) )
 | |
|         {
 | |
|             std::cerr << "Results of detector1 are invalid on image cat.png" << std::endl;
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
 | |
|         }
 | |
|         if( !compareResults(detections12_cat, true_detections12_cat, 1, score_thr) )
 | |
|         {
 | |
|             std::cerr << "Results of detector12 are invalid on image cat.png" << std::endl;
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
 | |
|         }
 | |
|         if( !compareResults(detections12_cars, true_detections12_cars, 1, score_thr) )
 | |
|         {
 | |
|             std::cerr << "Results of detector12 are invalid on image cars.png" << std::endl;
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         fs.open( true_res_path, FileStorage::WRITE );
 | |
|         if( fs.isOpened() )
 | |
|         {
 | |
|             writeDetections( fs, "detections1_cat", detections1_cat );
 | |
|             writeDetections( fs, "detections12_cat", detections12_cat );
 | |
|             writeDetections( fs, "detections12_cars", detections12_cars );
 | |
|         }
 | |
|         else
 | |
|             std::cerr << "File " << true_res_path << " cann't be opened to save test results" << std::endl;
 | |
|     }
 | |
| 
 | |
|     // 2. Simple tests of other methods
 | |
|     if( detector1.getClassCount() != 1 || detector1.getClassNames()[0] != "cat" )
 | |
|     {
 | |
|         std::cerr << "Incorrect result of method getClassNames() or getClassCount()" << std::endl;
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT);
 | |
|     }
 | |
| 
 | |
|     detector1.clear();
 | |
|     if( !detector1.empty() )
 | |
|     {
 | |
|         std::cerr << "There is a bug in method clear() or empty()" << std::endl;
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT);
 | |
|     }
 | |
| 
 | |
|     ts->set_failed_test_info( cvtest::TS::OK);
 | |
| }
 | |
| 
 | |
| TEST(Objdetect_LatentSVMDetector_c, regression) { CV_LatentSVMDetectorTest test; test.safe_run(); }
 | |
| TEST(Objdetect_LatentSVMDetector_cpp, regression) { LatentSVMDetectorTest test; test.safe_run(); }
 | 
